向量
何为向量
向量由长度和方向唯一确定,应该理解为自由向量,与位置无关
在数学中常规定向量的起点在原点,而在物理中称向量为矢量,也不再规定其起点位置
向量的理解
- 数学中,通过一个点的坐标,唯一给出一个向量
(注意,本来向量需要起点和终点共同确定,但这里默认向量起点在原点)
向量与点的关系?
- 由于默认向量起点在原点,在不混淆的前提下,也可以直接用点来代表向量,这样在向量过多时无需再思考复杂的箭头
- 书写时为了区别于点(x, y)的写法,故常写“列向量”形式 [ x , y ] T [x,y]^T [x,y]T
- 本质上,向量中几个数字的意义,应理解为标量scalars,他们是向量在特定坐标系下的 [坐标]
某个向量,实际上就是用这些标量scalars对相应的基向量 i \boldsymbol i i和 j \boldsymbol j j进行缩放scaling后叠加,因为谈论“坐标”依赖于当前使用的基向量,从这一点来看,坐标 ≠ \neq =向量,坐标+基向量=向量,我们平时说向量 [ 1 , 2 ] T [1,2]^T [1,2]T等等,其实是默认了在标准坐标系下描述向量,其基向量就是 [ 1 , 0 ] T [1,0]^T [1,0]T和 [ 0 , 1 ] T [0,1]^T [0,1]T
- 标量scalars的观点非常重要,“标量”就是指向量中的一个个数字,我们将其视为对基向量的缩放因子
- 当我们采用这种观点看待空间中的向量 v ⃗ \vec v v的来源时,我们就把这些标量(单纯的一系列数字)称为 v ⃗ \vec v v在该坐标系下的坐标
- 计算机科学中,向量单纯就是“数字列表”的高级说法,有n个数字就是n维向量
向量组
向量组就是一系列向量的集合
向量组和矩阵可以相互转化,向量组就是矩阵,矩阵就是向量组
(因此两者的秩等概念是相通的)
引入:张成空间
我们考虑两个向量所有可能的线性组合(用所有可能的实数标量对它们进行缩放并叠加),得到的向量的集合,称为这两个向量张成的空间(span)
- 大部分情况下张成空间span是整个平面;两向量共线时,span为一条直线;两向量均为零向量时,span为一个点
- 再推广到三维情况下的张成空间
先想象一个三维坐标系,然后考虑两个三维向量:他们的张成空间span是一个平面
这时加入第三个向量:
①正常情况下,三者的span为整个三维空间(可理解为之前的平面能够上下平移了,或是理解为完全利用了控制三个基向量的缩放的三个标量);
②然而,如果第三个向量与前两个同平面,那么它的加入并不会改变span(即并不能表示出原先无法表示的新向量)
这里,第三个向量对于张成空间span没有任何贡献,这就是线性相关
向量组的线性相关/线性无关
定义
对于 A \mathbf A A的列向量组 a 1 , a 2 , . . . , a n \boldsymbol a_1,\boldsymbol a_2,...,\boldsymbol an a1,a2,...,an,研究方程 a 1 x 1 + a 2 x 2 + . . . + a n x n = 0 \boldsymbol a_1x_1+\boldsymbol a_2x_2+...+\boldsymbol a_nx_n=0 a1x1+a2x2+...+anxn=0(即 A x = 0 \mathbf A \boldsymbol x=\boldsymbol 0 Ax=0)
- 若 A x = 0 \mathbf A \boldsymbol x=\boldsymbol 0 Ax=0有唯一零解,则称向量组线性无关;
- 若 A x = 0 \mathbf A \boldsymbol x=\boldsymbol 0 Ax=0有非零解/矩阵的零空间存在非零向量,则向量组线性相关;
A x = 0 \mathbf A \boldsymbol x=\boldsymbol 0 Ax=0有非零解/列向量组线性相关,则意味着其中至少一个向量可以被其他向量线性表出,例如若 x 1 ≠ 0 x_1\neq 0 x1=0,则有 a 1 = − a 2 x 2 + . . . + a n x n x 1 \boldsymbol a1=-\frac{\boldsymbol a_2x_2+...+\boldsymbol a_nx_n}{x_1} a1=−x1a2x2+...+anxn
理解
向量组线性相关的概念,可以从两个方面理解:
- 从几何上,向量组线性相关就是有多余的向量,多余的向量不能带来更大的维度,不能张成更大的空间;或者说,去掉它后,向量组能够张成的空间不变)
- 向量组线性相关
⟺ \iff ⟺向量组中至少有一个向量,能够被其余向量线性表出
(实际上与前一种等价,因为这个多余的向量就落于其余向量构成的span中)
⟺ \iff ⟺向量线性组合能够得到 0 ⃗ \vec 0 0(线性组合的系数不全为0)
⟺ \iff ⟺ A x = 0 \mathbf A \boldsymbol x=\boldsymbol 0 Ax=0有非零解/矩阵的零空间存在非零向量/矩阵 A \mathbf A A不可逆
注意,特殊情况是,向量组中包含有 0 ⃗ \vec 0 0向量,那么这组向量一定线性相关,因为任何向量通过数乘0都能线性表出 0 ⃗ \vec 0 0向量
- 从解方程的角度, 矩阵的列向量线性相关
⟺
\iff
⟺矩阵秩
r
a
n
k
<
n
rank<n
rank<n矩阵列数
这表明消元后并不是所有列都是主元列,则一定存在 n − r a n k n-rank n−rank个自由列,它们本质上就是前面的主元列的线性组合,故列线性相关 - 列向量线性无关
⟺
\iff
⟺矩阵列满秩
⟺
\iff
⟺矩阵的零空间只有0向量(方程
A
x
=
0
\mathbf A \boldsymbol x=\boldsymbol 0
Ax=0有唯一零解,没有非零解)
理解:矩阵对应线性变换,变换前有多少个基向量,变换后仍然有多少个基向量,从而变换前后的点一一对应(方程唯一零解)
判定线性相关性时,可以随时在矩阵(可逆性)、空间和方程组的概念之间切换,哪个判据更容易判定就用哪个
线性相关的性质
- 矩阵的行初等变换,不改变列向量组的线性相关关系
- 这里可以从高斯消元法的角度理解,方程直接的加减不会改变约束、不会改变方程组 A x = 0 \mathbf{Ax=0} Ax=0的解,解不改变说明列向量组的相关性不变(方程解的情况决定了系数矩阵 A \mathbf A A的列向量线性相关性:如果线性相关,方程有非零解,如果无关则只有唯一零解),更具体的说,若 P \mathbf P P为可逆的置换矩阵,则方程 A x = 0 \mathbf {Ax=0} Ax=0和方程 P A x = 0 \mathbf{PAx=0} PAx=0同解
由上可见,上述的“初等行变换不改变线性相关性”不仅是说不改变列秩,同时也在说:相关的两列变换后仍然相关,无关的两列变换后仍然无关,或者说, A \mathbf {A} A的极大无关列向量组的列索引 = 初等行变换后的 P A \mathbf {PA} PA的极大无关列向量组的列索引- 与之相对比,初等列变换虽然不改变列秩、不改变列极大无关组的向量个数,但会改变列向量的线性关系,例如原来无关的两列在列变换后可能变得相关
- 或者从另一个角度来看,将 A \mathbf {A} A的列向量视为在标准正交基下的坐标,初等行变换得到 P A \mathbf {PA} PA相当于应用了基的过渡矩阵,这是在改变坐标系的基底,进而改变了列向量的坐标值,但显然这种观察参考系的改变并不会改变列向量之间的线性关系
- 结合方程来看:对于矩阵
A
\mathbf A
A,假如有n个列向量,即
A
=
(
α
1
,
α
2
,
.
.
.
,
α
n
)
\mathbf A=(\alpha_1,\alpha_2,...,\alpha_n)
A=(α1,α2,...,αn)
那么,列向量 α 1 , α 2 , . . . , α n \alpha_1,\alpha_2,...,\alpha_n α1,α2,...,αn线性相关
(矩阵对应线性变换,这说明变换后的基向量中存在冗余向量)
⟺ \iff ⟺矩阵不满秩 R a n k ( A ) < n Rank(\mathbf A)<n Rank(A)<n
(列向量张成的空间,即列空间,即变换后基向量的张成空间;
变换后的空间维数<变换前的空间维数)
⟺ A x = 0 \iff \mathbf A \boldsymbol x=\boldsymbol 0 ⟺Ax=0有非零解
(变换后空间降维,则有很多向量被压缩到零向量)
⟺ d e t ( A ) = 0 \iff det( \mathbf A)=0 ⟺det(A)=0
(空间降维则行列式为0,但前提是 A \mathbf A A为方阵)