envi精度评定_envi分类精度评价.doc

envi分类精度评价

分类精度评价主要有两种方式:混合矩阵、ROC曲线。其中混合矩阵是以数据的形式表示分类的精度,而ROC曲线的用线条来表示精度。

这里主要整理一下混合矩阵中的两种方式

首先对被分类的原图像再次进行一次ROI的选择,这次的感兴趣区的选择尽量只选择纯净像元,这样使得分类的精度较高,或者在跟原图像同一区域范围的高精度图像上进行感兴趣区的选取。这次的感兴趣定义为,并且在次基础上进行分类,定义为。

然后开始进行分类精度评价:

Using Ground Truth Image

第一步:File → Open image file(打开原始图像)

第二步:Available Band List窗口中的File(打开作为检验标准用的分类结果图)Available Band List窗口中的File(打开分类结果图)注:顺序可以颠倒。

第三步:Classification → Post Classification → Confusion Matrix → Using Ground TruthImage

第四步:Classification Input File窗口中选择将要被精度评价的分类结果图ml3.tif。

第五步:Ground Truth Input File窗口中选择要作为检验标准的高精度的分类结果图

第六步:在Match Classes Parameters窗口中,如果两套分类中的各类名称一样,则会自动匹配,若不一致,可手动匹配,然后点Add Combination

第七步:Confusion Matrix Paeameter 窗口中选择精度评价的结果表示形式以及存储在哪个文件中

第八步:出结果。Using Ground Truth ROIs

第一步:File → Open image file(打开原始图像)

第二步:Available Band List窗口中的File(打开分类结果图)

第三步:Available Band List窗口中的File(打开作为检验标准用的分类结果图)注:这个分类结果图在Gray Sxale中是彩色的注:第二步与第三步的顺序不可以乱,必须在作为检验标准的分类结果图被打开的前提下才可以进行Using Ground Truth ROIs精度评价。

第四步:#1Max Like窗口中的Overlay → Region Of Intresting

第五步:#1ROI Tool窗口中的File → Restore ROIs(打开作为检验标准用的分类结果图的感兴趣区)

第六步:Classification → Post Classification → Confusion Matrix → Using Ground TruthROIs

第七步:Classification Input File中选中将要被进行精度评价的分类结果图

第八步:在Match Classes Parameters窗口中,如果两套分类中的各类名称一样,则会自动匹配,若不一致,可手动匹配,然后点Add Combination

第九步:Confusion Matrix Paeameter 窗口中选择精度评价的结果表示形式

第十步:出精度评价结果

参与评论 您还未登录,请先 登录 后发表或查看评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
©️2022 CSDN 皮肤主题:数字20 设计师:CSDN官方博客 返回首页

打赏作者

weixin_39597987

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值