抛物线中四边形面积最大值_二次函数中常用的求面积法

文章探讨了在二次函数背景下的几何问题,特别是如何利用铅垂法求解四边形面积的最大值。通过具体的中考真题解析,展示了在不同情境下,如何拆分图形并计算三角形面积,以达到求解四边形面积最大值的目的。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

e97d64a0bad97b8b7318ef048ce9501e.gif

   求三角形的面积是几何题中常见问题之一,可用的方法也比较多,比如面积公式、割补、等积变形、三角函数甚至海伦公式,下面我们看看在二次函数问题中常用的一种求面积的方法——铅垂法.

问题 

     在平面直角坐标系中,已知A(1,1)、B(7,3)、C(4,7),求△ABC的面积.

c6d240c7156b8d3c2231698de30bc7cc.png 【分析】显然对于这样一个位置的三角形,面积公式并不太好用,割补倒是可以一试,比如这样: 93f29b449f83e271631c27f8c6149ac4.png 构造矩形ADEF,用矩形面积减去三个三角形面积即可得△ABC面积.这是在“补”, 同样可以采用“割”: 439f90bf5ee14786fb7ce9fe7b7eb6ee.png 746829fbf7136a991c60f70a46798e3f.png 此处AE+AF即为A、B两点之间的水平距离. 由题意得:AE+BF=6. 下求CD: 根据A、B两点坐标求得直线AB解析式为: ab3fe9cf44f675e1802c41935dcb885a.png 由点C坐标(4,7)可得D点横坐标为4, 将4代入直线AB解析式得D点纵坐标为2, 故D点坐标为(4,2),CD=5, 方法总结 作以下定义: (1)水平宽:A、B两点之间的水平距离; (2)铅垂高:过点C作x轴的垂线与AB交点为D,线段CD即为AB边的“铅垂高”. dfbe137a7e1a5fbdd7547f38386617c2.png 如图可得: a9139ceb65cbabc9f7caa8eda774c120.png 【解题步骤】 (1)求A、B两点水平距离,即水平宽; (2)过点C作x轴垂线与AB交于点D,可得点D横坐标同点C; (3)求直线AB解析式并代入点D横坐标,得点D纵坐标; (4)根据C、D坐标求得铅垂高; (5)利用公式求得三角形面积.

中考真题

1   如图,已知抛物线y=ax²+bx+5经过A(-5,0)、B(-4,-3)两点,与x轴的另一个交点为C. (1)求该抛物线的表达式; (2)点P为该抛物线上一动点(与点B、C不重合),设点P的横坐标为t.当点P在直线BC的下方运动时,求△PBC的面积的最大值. 4bca9424fa0362d55fab2de87a8137c6.png 【分析】 (1)y=x²+6x+5; (2)取BC两点之间的水平距离为水平宽,过点P作PQ⊥x轴交直线BC于点Q,则PQ即为铅垂高. 3b2decf6033db16f54a14ba38c238717.png 根据A、C两点坐标得AC=4, 根据B、C两点坐标得直线BC解析式:y=x+1, 设P点坐标为(m,m²+6m+5), 则点Q(m,m+1), 得PQ=-m²-5m-4, 考虑到水平宽是定值,故铅垂高最大面积就最大. 【小结】选两个定点作水平宽,设另外一个动点坐标来表示铅垂高.     问题      拆解四边形

如何求一个普通的四边形的面积?

58f45a378d613c64fb727e94dbcf3649.png

解法也很普通,连对角线分割为两个三角形即可求得面积.至于三角形面积则可用铅垂法.

d6467cc90c53a1991bfd6ceb034be238.png

中考真题

1   已知抛物线y=ax²+bx-4经过点A(2,0)、B(-4,0),与y轴交于点C.

(1)求这条抛物线的解析式;

(2)如图,点P是第三象限内抛物线上的一个动点,当四边形ABPC的面积最大时,求点P的坐标;

f7119b5c1beed66f603b288c032a9d98.png

【分析】

(1)y=0.5x²+x-4;

(2)此处四边形ABPC并非特殊四边形,所以可以考虑连接对角线将四边形拆为两个三角形求面积.

若连接AP,则△ABP和△APC均为动三角形,非最佳选择;

若连接BC,可得定△ABC和动△BPC,只要△BPC面积最大,四边形ABPC的面积便最大.

521d65ece4149e898eb9f96c3d771383.png

考虑A(2,0)、B(-4,0)、C(0,-4),

45043d1ad8afa34da1d1c30b5b52d9b0.png

接下来求△BPC的面积,设P点坐标为(m,0.5m²+m-4),

连接BC,则直线BC的解析式为:y=-x-4

过点P作PQ⊥x轴交BC于点Q,则Q点坐标为(m,-m-4),

d997834725d7b55f858d1d6a6c7542e3.png

当m=-2时,PQ取到最大值2,此时△BPC面积最大,四边形ABPC面积最大.

此时P点坐标为(-2,-4).

已知抛物线y=ax²+1.5x+4的对称轴是直线x=3,与x轴相交于A,B两点(点B在点A右侧),与y轴交于点C.

(1)求抛物线的解析式和A,B两点的坐标;

(2)如图,若点P是抛物线上B、C两点之间的一个动点(不与B、C重合),是否存在点P,使四边形PBOC的面积最大?若存在,求点P的坐标及四边形PBOC面积的最大值;若不存在,请说明理由;

ad0ff9cd2c36d774cae54531f66aeff2.png

【分析】

(1)抛物线解析式为

9baf7abd4a77ae03169bff50fb7d1ccf.png

点A坐标为(-2,0),点B坐标为(8,0).

(2)显然将四边形PBOC拆为△BOC和△PBC,点C坐标为(0,4),

e77ecf8cdf23c8a83f7fe15217aeae6f.png

设P点坐标为

a5c36f9188e8171aa9e2ccd5a6a251db.png

根据B、C坐标可得BC的解析式为y=-0.5x+4

过点P作PQ⊥x轴交BC于点Q,则Q点坐标为(m,-0.5m+4),

b2dfda3298207f5119c1e31936d634c0.png 7ceb02c4b646381e4a634f1bcc334137.png

当m=4时,PQ取到最大值4,

41e63429dbf2b4f533432fc773582398.png

故四边形PBOC的最大面积为32,此时P点坐标为(4,6).

此题四边形已拆好,只要负责计算就可以了,而计算的内容,与三角形无异.

2   如图1,在平面直角坐标系中,直线y=-5x+5与x轴,y轴分别交于A,C两点,抛物线y=x²+bx+c经过A,C两点,与x轴的另一交点为B.

(1)求抛物线解析式及B点坐标;

(2)若点M为x轴下方抛物线上一动点,连接MA、MB、BC,当点M运动到某一位置时,四边形AMBC面积最大,求此时点M的坐标及四边形AMBC的面积;

(3)如图2,若P点是半径为2的圆B上一动点,连接PA、PC,当点P运动到某一位置时,PC+1/2PA的值最小,请求出这个最小值,并说明理由.

d3ddb0b8d599c67e70f56a76d02e7332.png 1f5e3c9e2a71efae9129c24b9158e592.png

【分析】

(1)由题意得:A(1,0)、C(0,5),代入可解抛物线解析式为:y=x²-6x+5,点B坐标为(5,0).

(2)显然四边形AMBC可拆为△ABC和△AMB,

465b33aa9882503a47e0912baf87185f.png

显然,当M点在抛物线顶点时,△AMB面积最大,

328be058472f689175f23a9d2791c2b8.png

此时M点坐标为(3,-4),

30e4a5dd8ce1d43a7413e14361abccb3.png

故四边形AMBC面积最大值为10+8=18,此时M点坐标为(3,-4).

(3)之所以留下这个小问是因为前两个小问也太不够看了,而这个也差不多.

显然是个“阿氏圆”问题,构造1/2PA即可,参考阿氏圆解决方法,

取点D(4,0),连接PD,任意时刻,均有PD=1/2PA,问题易解.

fb3c5abc776b6d0048c0f8125eabbbd5.png
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值