求三角形的面积是几何题中常见问题之一,可用的方法也比较多,比如面积公式、割补、等积变形、三角函数甚至海伦公式,下面我们看看在二次函数问题中常用的一种求面积的方法——铅垂法.
问题
在平面直角坐标系中,已知A(1,1)、B(7,3)、C(4,7),求△ABC的面积.
【分析】显然对于这样一个位置的三角形,面积公式并不太好用,割补倒是可以一试,比如这样: 构造矩形ADEF,用矩形面积减去三个三角形面积即可得△ABC面积.这是在“补”, 同样可以采用“割”: 此处AE+AF即为A、B两点之间的水平距离. 由题意得:AE+BF=6. 下求CD: 根据A、B两点坐标求得直线AB解析式为: 由点C坐标(4,7)可得D点横坐标为4, 将4代入直线AB解析式得D点纵坐标为2, 故D点坐标为(4,2),CD=5, 方法总结 作以下定义: (1)水平宽:A、B两点之间的水平距离; (2)铅垂高:过点C作x轴的