抛物线中四边形面积最大值_二次函数中常用的求面积法

文章探讨了在二次函数背景下的几何问题,特别是如何利用铅垂法求解四边形面积的最大值。通过具体的中考真题解析,展示了在不同情境下,如何拆分图形并计算三角形面积,以达到求解四边形面积最大值的目的。
摘要由CSDN通过智能技术生成
e97d64a0bad97b8b7318ef048ce9501e.gif

   求三角形的面积是几何题中常见问题之一,可用的方法也比较多,比如面积公式、割补、等积变形、三角函数甚至海伦公式,下面我们看看在二次函数问题中常用的一种求面积的方法——铅垂法.

问题 

     在平面直角坐标系中,已知A(1,1)、B(7,3)、C(4,7),求△ABC的面积.

c6d240c7156b8d3c2231698de30bc7cc.png 【分析】显然对于这样一个位置的三角形,面积公式并不太好用,割补倒是可以一试,比如这样: 93f29b449f83e271631c27f8c6149ac4.png 构造矩形ADEF,用矩形面积减去三个三角形面积即可得△ABC面积.这是在“补”, 同样可以采用“割”: 439f90bf5ee14786fb7ce9fe7b7eb6ee.png 746829fbf7136a991c60f70a46798e3f.png 此处AE+AF即为A、B两点之间的水平距离. 由题意得:AE+BF=6. 下求CD: 根据A、B两点坐标求得直线AB解析式为: ab3fe9cf44f675e1802c41935dcb885a.png 由点C坐标(4,7)可得D点横坐标为4, 将4代入直线AB解析式得D点纵坐标为2, 故D点坐标为(4,2),CD=5, 方法总结 作以下定义: (1)水平宽:A、B两点之间的水平距离; (2)铅垂高:过点C作x轴的
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值