抛物线中四边形面积最大值_【二次函数与几何综合讲练一】铅垂法求面积最值问题...

ecbbfa2c33e305fa57448df3fa15570a.png

专题导入

e8b4df6348b4d93cb479d58b93c56a57.png

方法点睛

如图,过△ABC的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC的“水平宽”(a),中间的这条直线在△ABC内部线段的长度叫△ABC的“铅垂高(h)”,我们可得出一种计算三角形面积的另一种方法:S△ABC=1/2ah,即三角形面积等于水平宽与铅垂高乘积的一半.

081f6ee43140246e1d37d57fab339ff5.png

根据上述方法,我们来得到求三角形的面积的最值问题的方法:S△PAB=1/2·PQ·|XA-XB|,根据二次函数解析式设出点P的坐标,结合一次函数解析式从而得到点Q的坐标,从而转化为S与点P横坐标之间的二次函数解析式,再根据二次函数增减性求最值.一般情况下,当铅垂线段PQ最大时,S△PAB取得最大值.

6fbe090de98094ace1fb8b1ab6883ccf.png

典例精讲

类型一:抛物线上动点产生的三角形面积的最值

例1 在平面直角坐标系中,直线y=1/2x-2与x轴交于点B,与y轴交于点C,二次函数y=1/2x2+bx+c的图象经过B,C两点,且与x轴的负半轴交于点A,动点D在直线BC下方的二次函数图象上.

(1)求二次函数的解析式;

(2)如图,连接DC,D35a9b774a845d73cbaaaf76f2c9baea6.pngB,设△BCD的面积为S,求S的最大值.[来源:学科网ZXXK]

79b1f88d54921ffd6df0784bc74fe3ad.png

分析

(1)根据题意得到B、C两点的坐标,7f2d401e01dbc5c2d888b7f611036985.png设抛物线的解析式为y=1/2(x-4)(x-m),将点C的坐标代入求得m的值即可;(2)过点D作DF⊥x轴,交BC与点F,设D(x,1/2x2-3/2x-2),则DF=-1/2x2+2x,然后列出S与x的关系式,最后利用配方法求得其最大值即可.

类型二:抛物线上动点产生的四边形的面积

例2. 如图,抛物线y=ax2+bx-3与x轴交于点A(1,0)和点B,与y轴交于点C,且其对称轴l为直线x=-1,点P是抛物线上B,C之间的一个动点(点P不与点B,C重合).

(1)直接写出bad4c2f47655fd52aded8ddf411946ac.png抛物线的解析式;

(2)探究:当动点N在对称轴l上时,是否存在PB⊥NB,且PB=NB的关系,若存在,请求出此时点P的坐标,若不不存,请说明理由;

(3)是否存在点P使得四边形PBAC的面积最大?若存在,请求出四边形PBAC面积的最大值,若不存在,请说明理由.

f6cb84abe7086b81e399a75e627bbd87.png

分析

(1)由对称轴可求得B点坐标,结合A、B两点坐标,利用待定系数法可求得抛物线解析式;(2)过点P作PM⊥x轴于点M,设抛物线对称轴l交x轴于点Q.可证明△BPM≌△NBQ,则可求得PM=BQ,可求得P点的纵坐标,利用抛物线解析式可求得P点坐标;(3)连接AC,设出P点坐标,则可表示出四边形PBAC的面积,再利用二次函数的性质可求得其最大值.

专题过关

1.如图,抛物线y=ax2+bx+c与坐标轴交点分别为A(﹣1,0),B(3,0),C(0,2),作直线BC.

(1)求抛物线的解析式;

(2)点P为抛物线上第一象限内dd738ca540b0b3c4a99f9776bfb3c426.png一动点,过点P作PD⊥x轴于点D,设点P的横坐标为t(0<t<3),求△ABP的面积S与t的函数关系式.

24601ba15d98b1e166b1aab1c509760b.png

2.如图①,在平面直角坐标系中,已知抛物线y=ax2+bx-5与x轴交于A(-1,0),B(5,0)两点,与y轴交于点C.

(1)求抛物线的函数解析式;

(2)若点D是y轴上的一点,且以B,C,D为顶点的三角形与△ABC相似,求点D的坐标;

(3)如图②,CE∥x轴与抛物线相交于点E,点H是直线CE下方抛物线上的动点,过点H且与y轴平行的直线与BC,CE分别相交于点F,G,试探究当点H运动到何处时,四边形CHEF的面积最大,求点H的坐标及最大面积.

377a9fdef80a8ed9f166d780f4df788c.png

3.如图,已知二次函数y=ax2+bx+3的图象交x轴于点A(1,0),B(3,0),交y轴于点C.

(1)求这个二次函数的解析式;

(2)点P是直线BC下方抛物线上的一动点,求△BCP面积的最大值;

(3)直线x=m分别交直线BC和抛物线于点M,N,当△BMN是等腰三角形时,直接写出m的值.

5725915ee3935e04a3bf5bdfd410f8b4.png5725915ee3935e04a3bf5bdfd410f8b4.png

                      备用图

4.如图,在平面直角d6ff7b22ab36b737b21faa4eabc1bb85.png坐标系中,A,B为x轴上两点,C,D为y轴上的两点,经过点A,C,B的抛物线的一部分C1与经过点A,D,B的抛物线的一部分C2组合成一条封闭曲线,我们把这条封闭曲线成为“蛋线”.已知点C的坐标为(0,﹣3/2),点M是抛物线C2:y=mx2﹣2mx﹣3m(m<0)的顶点.

(1)求A,B两点的坐标;

(2)“蛋线”在第四象限上是否存在一点P,使得△PBC的面积最大?若存在,求出△PBC面积的最大值;若不存在,请说明理由;

(3)当△BDM为直角三角形时,求m的值.

b542acb15befdabf4e28545a58bce6df.png

5.已知直线y=1/2x+2分别交x轴、y轴于A,B两点,抛物线y=1/2x2+mx﹣2经过点A,和x轴的另一个交点为C.

(1)求抛物线的解析式;

(2)如图1,点D是抛物线上的动点,且在第三象限,求△ABD面积的最大值;

(3)如图2,经过点M(﹣45e6b3460db97d29ffaf4b1fdacb6af32.png,1)的直线交抛物线于点P,Q,连接CP,CQ分别交y轴于点E,F,求OE•OF的值.

988620693b71a2f826b166377a8bf99a.png

可打印word版(附答案)获取方式

长按关注,回复

5271

即可获取下载链接

174a56a9cef35afb32174add5cac913b.png

更多教研资源,长按下图关注后查看?

97092f1110165ed7e1017743f4a32837.png

粉名校,您有眼光? 9461aeea088d035689a7541ae2ff7ab9.gif

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值