pytorch模型参数C语言读取,从Pytorch模型pth文件中读取参数成numpy矩阵的操作

目的:

把训练好的pth模型参数提取出来,然后用其他方式部署到边缘设备。

Pytorch给了很方便的读取参数接口:

nn.Module.parameters()

直接看demo:

from torchvision.models.alexnet import alexnet

model = alexnet(pretrained=True).eval().cuda()

parameters = model.parameters()

for p in parameters:

numpy_para = p.detach().cpu().numpy()

print(type(numpy_para))

print(numpy_para.shape)

上面得到的numpy_para就是numpy参数了~

Note:

model.parameters()是以一个生成器的形式迭代返回每一层的参数。所以用for循环读取到各层的参数,循环次数就表示层数。

而每一层的参数都是torch.nn.parameter.Parameter类型,是Tensor的子类,所以直接用tensor转numpy(即p.detach().cpu().numpy())的方法就可以直接转成numpy矩阵。

方便又好用,爆赞~

补充:pytorch训练好的.pth模型转换为.pt

将python训练好的.pth文件转为.pt

import torch

import torchvision

from unet import UNet

model = UNet(3, 2)#自己定义的网络模型

model.load_state_dict(torch.load("best_weights.pth"))#保存的训练模型

model.eval()#切换到eval()

example = torch.rand(1, 3, 320, 480)#生成一个随机输入维度的输入

traced_script_module = torch.jit.trace(model, example)

traced_script_module.save("model.pt")

以上为个人经验,希望能给大家一个参考,也希望大家多多支持脚本之家。如有错误或未考虑完全的地方,望不吝赐教。

首先,需要确保树莓派已经连接上摄像头,并且已经安装了pytorch模块。 接下来,需要通过摄像头获取图片,可以使用`picamera`模块来实现: ```python import picamera import time with picamera.PiCamera() as camera: camera.start_preview() time.sleep(2) camera.capture('image.jpg') ``` 上面的代码,首先使用`with picamera.PiCamera() as camera:`来打开摄像头,然后使用`camera.start_preview()`来打开预览窗口,接着使用`time.sleep(2)`等待2秒,最后使用`camera.capture('image.jpg')`来获取一张图片并保存到本地。 接下来,需要将获取到的图片输入到pytorch模型进行预测。可以先将图片转换numpy数组,然后使用pytorch的`torch.from_numpy()`方法将其转换tensor: ```python from PIL import Image import numpy as np import torch # 读取图片 image = Image.open('image.jpg') # 转换numpy数组 image_np = np.array(image) # 转换tensor image_tensor = torch.from_numpy(image_np).permute(2, 0, 1).float() ``` 上面的代码,首先使用PIL库的`Image.open()`方法读取图片,然后将其转换numpy数组,并使用pytorch的`torch.from_numpy()`方法将其转换tensor。需要注意的是,在转换时需要将通道维度移动到前面,即从(H, W, C)变(C, H, W)。 最后,将tensor输入到pytorch模型进行预测,可以使用以下代码: ```python # 加载模型 model = torch.load('model.pth') # 预测 output = model(image_tensor.unsqueeze(0)) # 获取预测结果 _, predicted = torch.max(output.data, 1) print(predicted) ``` 上面的代码,首先使用`torch.load()`方法加载模型,然后将图片的tensor作为输入,经过模型的前向传播,得到预测结果。最后使用`torch.max()`方法获取预测结果的最大值,并打印输出。需要注意的是,由于模型的输入需要是4维的,因此需要使用`unsqueeze(0)`将其添加一维。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值