上一篇内容回顾
(1)在Simulink中进行电力电子仿真时变步长与定步长的差别。
(2)基本永磁同步电机模型(Basic PMSM Model,以下简称B_PMSM_M)的数学模型, 在各种解算方法下的精度。
(3)初步讨论了,在定步长仿真时如何选择解算方法和确定仿真步长。
关于整个系统文章的内容请参考第一篇文章:
永磁同步电机控制系统仿真系列文章(1)
这一篇主要讨论的内容包括:饱和永磁同步电机模型(Saturation PMSM Model,简称S_PMSM_M)和谐波永磁同步电机模型(Harmonics PMSM Model,简称H_PMSM_M)。
饱和永磁同步电机模型
对比基本永磁同步电机模型(Basic PMSM Model,以下简称B_PMSM_M)的数学模型,S_PMSM_M模型考虑了dq轴电流变化导致的磁场饱和特性,因此d轴和q轴等效电感、转子永磁体磁链,不再是固定不变的参数,而是与dq轴电流的函数。这个函数在Simulink中一般是通过二维的Look up table的实现。因此三个固定参数,变成三个二维Look up table。这三个表格需要电机设计部门或者电机供应商提供,一般是通过有限元软件计算得到。
饱和永磁同步电机模型(Saturation PMSM Model,简称S_PMSM_M)的dq轴同步坐标系下的永磁同步电机数学方程
式中:
将dq轴等效电感Ld,Lq与dq轴电流的二维Look up table绘制为图形如下。从图中可以看出,电流为零时Ld,Lq的值最大,随着电流有效值的增加,饱和特性导致Ld,Lq逐步减少。
d轴等效电感Ld与dq轴电流的二维Look up table
q轴等效电感Lq与dq轴电流的二维Look up table
此外,这三个表也不是绝对的。有时设计部门认为转子磁通是恒定不变的,饱和特性只会影响dq轴等效电感,那么此时就只会有两个二维Look up table和一个固定参数。
定义模型输入输出端口和参数如下:
表1 In ports
表2 out port
表3 Parameters for Saturation PMSM Model
S_PMSM_M的Simulink实现
有了之前搭建好的B_PMSM_M的Simulink模型,要实现S_PMSM_M的Simulink模型就非常简单了。只需要增加i_d和i_q作为输入的三个Look up table。为了避免代数环,在i_d和i_q的反馈后面分别增加一个unit delay。搭建的Simulink仿真模型如下,因为模型内部有一个反馈,因此仿真步长应该尽量的短一些。如果希望模型可以反映定子电阻与温度和定子频率之间的关系可以再增加一个Look up table。
点开查看大图
此外MATLAB的Powertrain Blockset中有一个与S_PMSM_M类似的模型Flux-Based PMSM,但是实现思路是将dq轴等效磁链作为输入,通过Look up table,得到dq轴电流,详见参考文献【1】。MATLAB的帮助文件链接如下
https://ww2.mathworks.cn/help/autoblks/ref/fluxbasedpmsm.html
几种谐波永磁同步电机模型
谐波永磁同步电机模型(Harmonics PMSM Model,简称H_PMSM_M),的形式有多种,实现方法也有多种,下面给出几种常见的实现方法。
方法一:
详见参考文献【2】,在参考文献【1】的基础上,引入转子位置作为Look up table的输入。数学方程如下:
式中:
此外
PMSM方程的实现框图如下:
这种通过磁通反向查表得到dq轴电流的方法,最大的好处是避免的解算偏微分方程。
此外如果希望考虑铁损的影响,也可以参考文献【2】增加铁损的部分。MATLAB帮助文件的链接如下:
https://www.mathworks.com/help/autoblks/ref/fluxbasedpmsm.html
整体的模型框图如下:
方法二:
dq轴同步坐标系下的,数学方程如下:
式中
代入,整理得到:
因为:
得到:
解算此偏微分方程,得到dq轴电流,再和转子位置一起,通过Look up table,得到:
此外,考虑铁损的方式与方法一类似。
方法三:
三相静止坐标系下的数学方程如下:
式中:
代入:
解算此偏微分方程得到再和转子位置一起,通过Look up table,得到:
此方法的优点就是省去了正正弦和余弦函数,Clarke和Park变换等,缺点就是偏微分方程的阶算增加了。
MATLAB帮助文件的链接如下:
https://www.mathworks.com/help/physmod/sps/ref/femparameterizedpmsm.html
下一篇会讨论谐波永磁同步电机模型(Harmonics PMSM Model,简称H_PMSM_M)。
——参考文献——
[1] Hu, Dakai, Yazan Alsmadi, and Longya Xu. “High fidelity nonlinear IPM modeling based on measured stator winding flux linkage.” IEEE® Transactions on Industry Applications, Vol. 51, No. 4, July/August 2015.
[2] Chen, Xiao, Jiabin Wang, Bhaskar Sen, Panagiotis Lasari, Tianfu Sun. “A High-Fidelity and Computationally Efficient Model for Interior Permanent-Magnet Machines Considering the Magnetic Saturation, Spatial Harmonics, and Iron Loss Effect.” IEEE Transactions on Industrial Electronics, Vol. 62, No. 7, July 2015.