pmsm simulink foc 仿真_永磁同步电机控制系统仿真系列文章(4)

上一篇内容回顾

(1)在Simulink中进行电力电子仿真时变步长与定步长的差别。

(2)基本永磁同步电机模型(Basic PMSM Model,以下简称B_PMSM_M)的数学模型, 在各种解算方法下的精度。

(3)初步讨论了,在定步长仿真时如何选择解算方法和确定仿真步长。

关于整个系统文章的内容请参考第一篇文章:

永磁同步电机控制系统仿真系列文章(1)

这一篇主要讨论的内容包括:饱和永磁同步电机模型(Saturation PMSM Model,简称S_PMSM_M)和谐波永磁同步电机模型(Harmonics PMSM Model,简称H_PMSM_M)。

饱和永磁同步电机模型

对比基本永磁同步电机模型(Basic PMSM Model,以下简称B_PMSM_M)的数学模型,S_PMSM_M模型考虑了dq轴电流变化导致的磁场饱和特性,因此d轴和q轴等效电感、转子永磁体磁链,不再是固定不变的参数,而是与dq轴电流的函数。这个函数在Simulink中一般是通过二维的Look up table的实现。因此三个固定参数,变成三个二维Look up table。这三个表格需要电机设计部门或者电机供应商提供,一般是通过有限元软件计算得到。

饱和永磁同步电机模型(Saturation PMSM Model,简称S_PMSM_M)的dq轴同步坐标系下的永磁同步电机数学方程

2ebf69a0ccd4168d9c3943cbf759499f.png ab4bd05784ad8847323142a5fa6bdab2.png 4f0638e86e576f9cf53ddaab95566c6c.png

式中:

d2d682b4d4fcddcfc7943318caa7e490.png

将dq轴等效电感Ld,Lq与dq轴电流的二维Look up table绘制为图形如下。从图中可以看出,电流为零时Ld,Lq的值最大,随着电流有效值的增加,饱和特性导致Ld,Lq逐步减少。

0a3e11277eeb70aa2d1b18b93926442d.png

d轴等效电感Ld与dq轴电流的二维Look up table

d42a1dec9f4a4c4f5c92cf05e48d1667.png

q轴等效电感Lq与dq轴电流的二维Look up table

此外,这三个表也不是绝对的。有时设计部门认为转子磁通是恒定不变的,饱和特性只会影响dq轴等效电感,那么此时就只会有两个二维Look up table和一个固定参数。

定义模型输入输出端口和参数如下:

表1 In ports

cd81db7b9774042474d84790e452af55.png

表2 out port

2060509414227b19d2e38decda416f02.png

表3  Parameters for Saturation PMSM Model

f24542087ad0faa2c7d19bed75eadf95.png

S_PMSM_M的Simulink实现

有了之前搭建好的B_PMSM_M的Simulink模型,要实现S_PMSM_M的Simulink模型就非常简单了。只需要增加i_d和i_q作为输入的三个Look up table。为了避免代数环,在i_d和i_q的反馈后面分别增加一个unit delay。搭建的Simulink仿真模型如下,因为模型内部有一个反馈,因此仿真步长应该尽量的短一些。如果希望模型可以反映定子电阻与温度和定子频率之间的关系可以再增加一个Look up table。

8ddd3d2f9f41ac56319ebfe8a28d7055.png

点开查看大图

此外MATLAB的Powertrain Blockset中有一个与S_PMSM_M类似的模型Flux-Based PMSM,但是实现思路是将dq轴等效磁链作为输入,通过Look up table,得到dq轴电流,详见参考文献【1】。MATLAB的帮助文件链接如下

https://ww2.mathworks.cn/help/autoblks/ref/fluxbasedpmsm.html

几种谐波永磁同步电机模型

谐波永磁同步电机模型(Harmonics PMSM Model,简称H_PMSM_M),的形式有多种,实现方法也有多种,下面给出几种常见的实现方法。

方法一:

详见参考文献【2】,在参考文献【1】的基础上,引入转子位置作为Look up table的输入。数学方程如下:

4aec538f6717b7d1d549fc8407f357a6.png

式中:

f61beaeb6b7dbfcfc028faf891ccb4ef.png

此外

3f4326874731ec17ebb3214833752a5d.png

PMSM方程的实现框图如下:

8e31de8898b493d1dbb4244aef9eb772.png

这种通过磁通反向查表得到dq轴电流的方法,最大的好处是避免的解算偏微分方程。

此外如果希望考虑铁损的影响,也可以参考文献【2】增加铁损的部分。MATLAB帮助文件的链接如下:

https://www.mathworks.com/help/autoblks/ref/fluxbasedpmsm.html

整体的模型框图如下:

7faf319a77e05f5b2eb722d100a39887.png

方法二:

dq轴同步坐标系下的,数学方程如下:

506516b2096141270077ff284be091e7.png

式中

1d8968ec9dfb29714b159d2b04d9f1bb.png

代入,整理得到:

d3f982376a3b81a63cef026640564986.png

因为:

3f67c799a802a3ee15cb5b3e73afe8a7.png

得到:

f1da9226d4a5440a974b82321882a436.png

解算此偏微分方程,得到dq轴电流,再和转子位置一起,通过Look up table,得到:

52644fe165f5cde132eebea76d9a35f5.png

此外,考虑铁损的方式与方法一类似。

方法三:

三相静止坐标系下的数学方程如下:

c3127d7dbcd2017b46d19bc947d850ba.png

式中:

db65739e1309f892a26f0cf998358845.png

代入:

08269202c1bc644051002c0c296182f8.png

解算此偏微分方程得到843e076a432fb0d074bd46e7211a4ad9.png再和转子位置一起,通过Look up table,得到:

5bcd68171754ffa7f923ea21afca4f4b.png

此方法的优点就是省去了正正弦和余弦函数,Clarke和Park变换等,缺点就是偏微分方程的阶算增加了。

MATLAB帮助文件的链接如下:

https://www.mathworks.com/help/physmod/sps/ref/femparameterizedpmsm.html

下一篇会讨论谐波永磁同步电机模型(Harmonics PMSM Model,简称H_PMSM_M)。

——参考文献——

[1] Hu, Dakai, Yazan Alsmadi, and Longya Xu. “High fidelity nonlinear IPM modeling based on measured stator winding flux linkage.” IEEE® Transactions on Industry Applications, Vol. 51, No. 4, July/August 2015.

[2] Chen, Xiao, Jiabin Wang, Bhaskar Sen, Panagiotis Lasari, Tianfu Sun. “A High-Fidelity and Computationally Efficient Model for Interior Permanent-Magnet Machines Considering the Magnetic Saturation, Spatial Harmonics, and Iron Loss Effect.” IEEE Transactions on Industrial Electronics, Vol. 62, No. 7, July 2015.

f372fc03c410f6ae45f77612e9a8051a.png
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值