计算机术语仿真,计算机仿真-精.ppt

计算机仿真-精.ppt

一、计算机仿真的基本概念 仿真常用术语: 仿真研究步骤 例3 随机变量 x = {0,1,2}表示每分钟到达超市收款台的人数,有分布列 xk 0 1 2 pk 0.4 0.3 0.3 模拟十分钟内顾客到达收款台的状况. 三、时间步长法 时间步长法 应用举例-池水含盐量问题 池水含盐量仿真流程 池水含盐量仿真结果 四、事件步长法 事件步长法 例7 收款台前的排队过程的仿真 假设: 1、顾客的到达收款台是随机的,平均时间间隔 为0.5分钟,即间隔时间服从?=2的指数分布。 2、对不同的顾客收款和装袋的时间服从正态分布 N(1,1/9)。 现要求模拟20位顾客到收款台前的排队情况, 主要关心问题:每个顾客的平均等待时间,队长,服务 员的工作效率. 假设 t(i): 第i位顾客到达时刻, t2(i):第i位顾客受到的服务时间(随机变量), T(i): 第i位顾客离去时刻. 将第i位顾客到达作为第i件事发生; t(i+1)- t(i)= r(i) (随机变量) 平衡关系: 当 t(i+1)?T(i) 时, T(i+1)=t(i+1)+t2(i+1); 否则, T(i+1)=T(i)+t2(i+1) 五、Monte Carlo方法 应用举例-报童的策略 初始状态 时间步长加1 在当前步长内, 考察分析,计算和 记录系统的活动 仿真时间到否? 结束 输出结果 是 否 例6:池水含盐量问题 某水池有2000m3水,其中含盐2kg,以每分钟6m3的速率向水池内注入含盐率为0.5kg/m3的盐水,同时又以每分钟4m3的速率从水池流出搅拌均匀的盐水.试用计算机仿真该水池内盐水的变化过程,并每隔10min计算水池中水的体积、含盐量和含盐率.欲使池中盐水的含盐率达到0.2kg/m3,需经过多少时间? 池水含盐量随时间变化的示意图 分析:系统中,实体是水,属性是水的体积、含盐量和含盐率,活动是水的注入与流出,由于注入和流出活动的作用,池中水的体积与含盐量、含盐率均随时间变化,初始时刻含盐率为0.001kg/m3,以后每分钟注入含盐率为0.5 kg/m3的水6m3,流出混合均匀的盐水4m3,当池中水的含盐率达到0.2kg/m3时,结束仿真过程. 为了能定量地考察系统在任一时刻的属性,引入下列记号: 注水速度: WI=6 m3/min 排水速度: WO=4 m3/min 注入水的含盐率:SI=0.5 kg/m3 最终含盐率:SF=0.2 kg/m3 T时刻水的体积:VTm3 T时刻水的含盐量:ST kg T时刻水的含盐率:SR=ST/VT kg/m3 对于这样一个连续系统仿真时,必须在一系列离散时间点t0< t1< t2

内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
《芋道开发指南文档-2023-10-27更新》是针对软件开发者和IT专业人士的一份详尽的资源集合,旨在提供最新的开发实践、范例代码和最佳策略。这份2023年10月27日更新的文档集,包含了丰富的模板和素材,帮助开发者在日常工作中提高效率,保证项目的顺利进行。 让我们深入探讨这份文档的可能内容。"芋道"可能是一个开源项目或一个专业的技术社区,其开发指南涵盖了多个方面,例如: 1. **编程语言指南**:可能包括Java、Python、JavaScript、C++等主流语言的编码规范、最佳实践以及常见问题的解决方案。 2. **框架与库的应用**:可能会讲解React、Vue、Angular等前端框架,以及Django、Spring Boot等后端框架的使用技巧和常见应用场景。 3. **数据库管理**:涵盖了SQL语言的基本操作,数据库设计原则,以及如何高效使用MySQL、PostgreSQL、MongoDB等数据库系统。 4. **版本控制**:详细介绍了Git的工作流程,分支管理策略,以及与其他开发工具(如Visual Studio Code、IntelliJ IDEA)的集成。 5. **持续集成与持续部署(CI/CD)**:包括Jenkins、Travis CI、GitHub Actions等工具的配置和使用,以实现自动化测试和部署。 6. **云服务与容器化**:可能涉及AWS、Azure、Google Cloud Platform等云计算平台的使用,以及Docker和Kubernetes的容器化部署实践。 7. **API设计与测试**:讲解RESTful API的设计原则,Swagger的使用,以及Postman等工具进行API测试的方法。 8. **安全性与隐私保护**:涵盖OAuth、JWT认证机制,HTTPS安全通信,以及防止SQL注入、
该是一个在 Kaggle 上发布的数据集,专注于 2024 年出现的漏洞(CVE)信息。以下是关于该数据集的详细介绍:该数据集收集了 2024 年记录在案的各类漏洞信息,涵盖了漏洞的利用方式(Exploits)、通用漏洞评分系统(CVSS)评分以及受影响的操作系统(OS)。通过整合这些信息,研究人员和安全专家可以全面了解每个漏洞的潜在威胁、影响范围以及可能的攻击途径。数据主要来源于权威的漏洞信息平台,如美国国家漏洞数据库(NVD)等。这些数据经过整理和筛选后被纳入数据集,确保了信息的准确性和可靠性。数据集特点:全面性:涵盖了多种操作系统(如 Windows、Linux、Android 等)的漏洞信息,反映了不同平台的安全状况。实用性:CVSS 评分提供了漏洞严重程度的量化指标,帮助用户快速评估漏洞的优先级。同时,漏洞利用信息(Exploits)为安全研究人员提供了攻击者可能的攻击手段,有助于提前制定防御策略。时效性:专注于 2024 年的漏洞数据,反映了当前网络安全领域面临的新挑战和新趋势。该数据集可用于多种研究和实践场景: 安全研究:研究人员可以利用该数据集分析漏洞的分布规律、攻击趋势以及不同操作系统之间的安全差异,为网络安全防护提供理论支持。 机器学习与数据分析:数据集中的结构化信息适合用于机器学习模型的训练,例如预测漏洞的 CVSS 评分、识别潜在的高危漏洞等。 企业安全评估:企业安全团队可以参考该数据集中的漏洞信息,结合自身系统的实际情况,进行安全评估和漏洞修复计划的制定。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值