python odeint_Lorenz洛伦兹微分方程的Python求解

v2-b6cbefc22d2644fb9bbe9e8803ca4109_1440w.jpg?source=172ae18b

本小节求解Lorenz微分方程: 在“数学之美”那一章里,为方便读者理解,Lorenz吸引子轨迹的计算采用了比较“原始”的方法。采用integrate模块中的odeint()函数可以更加方便地完成计算。Lorenz吸引子由下述三个微分方程定义:

本文节选自作者的《Python编程基础及应用》视频教程。

Python编程基础及应用_哔哩哔哩 (゜-゜)つロ 干杯~-bilibili​www.bilibili.com
v2-83e2004c0e0ab75f9845c0e05c9c9bc8_180x120.jpg

其中,σ, ρ, β为参数。这些方程定义了三维空间中的一个无质量点(x,y,z)的各轴坐标相对于时间的速度矢量。我们这里需要计算随着时间t的变化,无质量点(x,y,z)的运动轨迹,也就是一组时间点上的系统状态。

v2-44626c2ffd954f60cf366ea21d3448dc_b.jpg

​ 源代码如下:

import 

控制台输出:

...
x,y,z,t: -5.64346434502397 -6.711791064199058 21.875348370569984 12.728116763457338
x,y,z,t: -5.6434643216721705 -6.7117909582448 21.875348207825766 12.728116763457338
x,y,z,t: -5.776218568580239 -7.038353710472807 21.677470196579595 12.739506857199522
...
type(track1): <class 'numpy.ndarray'> track1.shape: (3000, 3)

​ 首先,定义了函数lorenz(),它的任分是计算无质量点坐标各方向相对于时间t的微分值。参数s,r,b分别对应方程组中的σ, ρ, β,t为时间(在函数里没有用到),p是一个ndarray,p.tolist()将其转换成一个列表,其中包括当前无质量点的坐标。

​ t = np.arange(0,30,0.01)以0.01有间隔,生成从0至30(不含)的等差数列,它代表了一组离散的时间点。

​ integrate.odeint()则进行微分方程求解,参数lorenz指明了微分计算函数,(0.0,1.00,0.0)则为无质量点的位置初始值;t为离散时间点;args指定了要传递给lorenz函数的额外参数,对应s,r,b,为固定值。odeint()会迭代调用lorenz()函数,用于生成无质量点的运动轨迹。上述控制台输出的结果可以帮助读者理解x,y,z坐标及t的变化过程。

​ t是一个长度为3000的一维数组,odeint()返回结果为一个形状为(3000,3)的二维数组,用3000个离散的三维空间点来表示无质量点的运动轨迹。据信,odeint()会将lorenz()函数返回的微分值再乘以dt以获得dx,dy和dz,这个过程其实跟我们在“数学之美”那一章的模拟计算过程类似,但更高效,更精确。

​ track1[:,0]对track1二维数组进行下标切片,得到3000个元素的一维数组,表示3000个空间点的x坐标,y和z坐标以类似方式获得。

​ 我们可以看到,track1-红和track2-绿仅在系统初始值上有细微差异,但随着时间的推进,其运动轨迹差异越来越大,表现出“混沌”性:南美洲一只蝴蝶扇动翅膀,会引起对面半球一场飓风

本文节选自作者的B站MOOC及同名教材:

Python编程基础及应用 — 重庆大学 高等教育出版社,作者亲授_哔哩哔哩 (゜-゜)つロ 干杯~-bilibili​www.bilibili.com

v2-ae4960aa2a277a2cce30c7a9c6685c62_b.jpg
版权声明 本文 可以在互联网上自由转载,但必须:注明出处(作者:海洋饼干叔叔)并包含指向本页面的链接。 本文 不可以以纸质出版为目的进行改编、摘抄。
洛伦兹方程是一组非线性微分方程,可以使用scipy库odeint函数进行求解odeint函数是scipy.integrate模块的常微分方程通用函数,可以用于求解微分方程和偏微分方程。 首先,需要导入所需库: ```python import numpy as np from scipy.integrate import odeint ``` 接下来,定义洛伦兹方程的函数。洛伦兹方程涉及三个变量,分别是x、y、z,以及三个参数σ、ρ、β。洛伦兹方程可以表示为三个微分方程: ```python def lorenz_equations(variables, t, σ, ρ, β): x, y, z = variables dx_dt = σ * (y - x) dy_dt = x * (ρ - z) - y dz_dt = x * y - β * z return [dx_dt, dy_dt, dz_dt] ``` 其,variables是变量的数组,包括x、y、z;t是自变量,通常为时间;σ、ρ、β是参数。 然后,定义初始条件和参数: ```python initial_conditions = [x0, y0, z0] t = np.linspace(t_start, t_end, num_points) ``` 其,x0、y0、z0是初始条件,t_start、t_end是求解的时间范围,num_points是在该时间范围内想要获得的数据点的数量。 接下来,使用odeint函数求解洛伦兹方程: ```python solution = odeint(lorenz_equations, initial_conditions, t, args=(σ, ρ, β)) ``` 其lorenz_equations是定义的洛伦兹方程函数,initial_conditions是初始条件,t是自变量数组,args是参数。 最后,可以通过solution数组获得的结果,例如: ```python x = solution[:, 0] y = solution[:, 1] z = solution[:, 2] ``` 这样就可以获得x、y、z随时间变化的数据。 请注意,洛伦兹方程是一种混沌系统,初始条件和参数的微小变化可能导致完全不同的结果。因此,对于相同的初始条件和参数,可能会得到不同的
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值