python 时间序列异常值_python中缺少时间序列值

插值和滤波:

由于是时间序列问题,我将在答案中使用o/p图图像进行解释:

假设我们有如下时间序列的数据:(在x轴上=天数,y=数量)pdDataFrame.set_index('Dates')['QUANTITY'].plot(figsize = (16,6))

我们可以看到时间序列中有一些NaN数据。%nan=19.400%的总数据。现在我们要估算null/nan值。

我将尝试向您显示插值和filna方法的o/p,以在数据中填充Nan值。

插值():

首先我们将使用插值:pdDataFrame.set_index('Dates')['QUANTITY'].interpolate(method='linear').plot(figsize = (16,6))

注:这里没有时间插值法

使用回填方法填充pdDataFrame.set_index('Dates')['QUANTITY'].fillna(value=None, method='backfill', axis=None, limit=None, downcast=None).plot(figsize = (16,6))

使用回填方法fillna()&limit=7

限制:这是要向前/向后填充的最大连续NaN值数。换言之,如果连续的nan数量超过此数量,则只会部分填补空缺。pdDataFrame.set_index('Dates')['QUANTITY'].fillna(value=None, method='backfill', axis=None, limit=7, downcast=None).plot(figsize = (16,6))

我发现fillna函数更有用。但是您可以使用任何一种方法来填充两列中的nan值。

有关这些功能的详细信息,请参阅以下链接:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值