说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。
1.项目背景
Prophet由facebook开源的基于python和R语言的数据预测工具,基于时间和变量值结合时间序列分解和机器学习的拟合来做的;其强大的对于当变量的预测能力,可以解决大部分的实际场景中的对单项值的预测。在时间序列分析领域,一般会把时间序列拆分成几个部分,分别是S(t)季节项,趋势项T(t),剩余项T(t),一般我们算法模型有两种,加法模型和乘法模型;同时乘法模型我们发现取对后也可以分解成加法模型。
Prophet适用于具有明显的内在规律的商业行为数据,例如:有如下特征的业务问题:
1.有至少几个月(最好是一年)的每小时、每天或每周观察的历史数据;
2.有多种人类规模级别的较强的季节性趋势:每周的一些天和每年的一些时间;
3.有事先知道的以不定期的间隔发生的重要节假日(比如国庆节);
4.缺失的历史数据或较大的异常数据的数量在合理范围内;
5.有历史趋势的变化(比如因为产品发布);
6.对于数据中蕴含的非线性增长的趋势都有一个自然极限或饱和状态。
2.数据获取
本次建模数据来源于网络(本项目撰写人整理而成),数据项统计如下:
数据详情如下(部分展示):
3.数据预处理
3.1 用Pandas工具查看数据
使用Pandas工具的head()方法查看前五行数据:
从上图可以看到,总共有9个字段。
关键代码:
3.2缺失值统计
使用Pandas工具的info()方法统计每个特征缺失情况:
从上图可以看到,数据不存在缺失值,总数据量为355条。
关键代码:
3.3描述性统计分析
通过Pandas工具的describe()方法来来统计变量的平均值、标准差、最大值、最小值、分位数等信息:
关键代码如下:
4.探索性数据分析
4.1 PM2变量时间序列图
用Pandas工具的plot()方法进行统计绘图,如下:
从图中可以看到,变量PM2在2020年12月20日到2021年2月8日波动性最大;其它时间数值相对稳定。
4.2 PM2变量分布直方图
从图中可以看到,PM2变量成一定的偏态分布。
4.3 相关性分析
通过Pandas工具的corr()方法和seaborn工具的heatmap()方法绘制相关性热力图:
从图中可以看到,正数为正相关,负数为负相关,绝对值越大相关性越强。
5.特征工程
5.1 构建时间序列数据框
构建只包含PM2和DATE的数据框。关键代码如下:
6.构建Prophet时间序列模型
主要使用Prophet算法,用于时间序列预测与异常值检测。
6.1模型参数
7.模型预测
输出预测结果前5行:
其中yhat列为预测值,yhat_lower和yhat_upper为95%置信区间的下边界和上边界预测值。
8.异常值检测
输出异常值的前5行:
从上图可以看出,异常值的数量总共13个。
从上图可以看到,阴影部分为95%置信区间的上下边界区域,异常值主要分布在95%置信区间上边界上面。
9.结论与展望
综上所述,本文采用了Prophet时间序列模型,最终证明了我们提出的模型效果良好。
# 本次机器学习项目实战所需的资料,项目资源如下: 链接:https://pan.baidu.com/s/1sdM58c_SAfoSbWD29tilxA 提取码:ttve # 用Pandas工具查看数据 print(data.head()) # 数据缺失值统计 print('****************************************') print(data.info()) print('****************************************') print(data.describe().round(4)) # 保留4位小数点 # 构建时间序列数据框 df_data = pd.DataFrame({"y": data['PM2']}) df_data["ds"] = data['DATE'] # PM2变量时间序列图 plt.rcParams['font.sans-serif'] = ['SimHei'] # 指定默认字体 plt.rcParams['axes.unicode_minus'] = False # 解决保存图像是负号'-'显示为方块的问题 df_data.plot(x="ds", y="y", style="b-o", figsize=(14, 7)) plt.xlabel('时间') plt.ylabel('样\n本\n值\n', rotation=0, verticalalignment='bottom', horizontalalignment='left', labelpad=19, y=0.36) plt.grid() plt.title('PM2变量时间序列图') plt.show()