r语言electricity数据集_R语言实验报告.doc

这篇实验报告介绍了使用R语言进行判别分析的过程,具体涉及线性判别lda和二次判别qda,以评估企业财务状况。报告展示了如何管理数据、调用相关函数以及分析结果,表明qda在该案例中表现优于lda。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

R语言实验报告

R语言实验报告

R语言判别分析实验报告

班级:应数1201

学号姓名:麦琼辉

时间:2016年11月28号

1 实验目的及要求

1) 了解判别分析的目的和意义;

2) 熟悉R语言中有关判别分析的算法基础。

2 实验设备及要求

个人计算机一台,装有R语言以及RStudio并且带有MASS包。

3 实验内容

企业财务状况的判别分析

4 实验主要步骤

1) 数据管理:实验对21个破产的企业收集它们在前两年的财务数据,对25个财务良好的企业也收集同一时期的数据。数据涉及四个变量:CF_TD;NI_TA;CA_CL;CA_NS,一个分组变量:企业现状。

2) 调入数据:对数据复制,然后在RStudio编辑器中执行如下命令。

case5=

head

3) Fisher判别效果:采用Bayes方式,即先验概率为样本例数,相关的RStudio程序命令如下所示。

library

ld=lda;ld #线性判别

ZId=predict

addmargins)

4) Fisher判别效果:再次采用Bayes

方式,相关的RStudio程序命令如下所示。

library

qd=qda;qd #二次判别

Zqd=predict

addmargins)

5 实验结果

### 关于电力需求与价格预测项目 该项目由开发者ritikdhame创建并托管在GitHub上,专注于利用机器学习技术来完成电力需求和价格的预测工作。此项目的核心目标在于通过分析历史数据集中的模式,构建模型以对未来的需求量以及市场价格进行精确估计[^1]。 #### 数据预处理部分 为了确保输入到模型的数据质量,在Jupyter Notebook中实现了详尽的数据清洗流程。这一步骤涵盖了缺失值填补、异常检测及去除重复记录等内容。特别值得注意的是时间序列特征工程环节,其中加入了诸如节假日效应、季节性波动等因素作为额外变量以便提升预测精度[^2]。 ```python import pandas as pd from sklearn.preprocessing import StandardScaler # 加载原始数据文件 data = pd.read_csv('electricity_data.csv') # 处理NA值 data.fillna(method='ffill', inplace=True) # 特征标准化 scaler = StandardScaler() scaled_features = scaler.fit_transform(data[['demand', 'price']]) data[['scaled_demand', 'scaled_price']] = scaled_features ``` #### 建模过程概述 采用多种算法对比实验的方式选取最佳方案用于实际部署环境当中。其中包括但不限于线性回归(Linear Regression),支持向量机(Support Vector Machine, SVM),随机森林(Random Forests)等传统方法;同时也尝试了LSTM(Long Short-Term Memory networks)这种专门针对时序型任务设计的人工神经网络结构[^3]。 以下是基于Keras框架搭建的一个简单版本LSTM模型实例: ```python from keras.models import Sequential from keras.layers import LSTM, Dense def build_lstm_model(input_shape): model = Sequential([ LSTM(units=50, return_sequences=True, input_shape=input_shape), LSTM(units=50), Dense(units=1) ]) model.compile(optimizer='adam', loss='mean_squared_error') return model input_shape = (X_train.shape[1], X_train.shape[2]) model = build_lstm_model(input_shape) history = model.fit(X_train, y_train, epochs=20, batch_size=32, validation_split=0.2) ``` #### 结果评估标准 对于此类预测类问题而言,均方根误差(Root Mean Square Error, RMSE)被广泛接受作为一个衡量指标用来评判不同模型之间的优劣程度。除此之外还计算平均绝对百分比误差(Mean Absolute Percentage Error, MAPE),从而更直观反映预测偏差大小给业务决策者提供参考依据[^4]。 ```python from sklearn.metrics import mean_squared_error, mean_absolute_percentage_error import numpy as np y_pred = model.predict(X_test) rmse = np.sqrt(mean_squared_error(y_test, y_pred)) mape = mean_absolute_percentage_error(y_test, y_pred) print(f'RMSE: {rmse:.2f}') print(f'MAPE: {mape*100:.2f}%') ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值