pytorch bert文本分类_用NodeJS/TensorFlowJS调用BERT实现文本分类

本文介绍了如何在NodeJS环境下利用TensorFlowJS调用BERT模型进行文本分类。通过对比,指出NodeJS版本模型推理速度优于Python,并提供了一个使用ChineseGLUE数据集的示例。同时,文章分享了相关资源链接和代码示例。
摘要由CSDN通过智能技术生成

edeeec62ee30d84435a2fc411e8c93ce.png

几个提前知识

  • TensorFlowJS可以简单认为有Browser和NodeJS两个版本,前者可以运行在浏览器,后者可以运行在NodeJS环境下

  • NodeJS版本的模型推理速度比Python快哦!参考官方这个博客 https://blog.tensorflow.org/2020/05/how-hugging-face-achieved-2x-performance-boost-question-answering.html

  • NodeJS版本理论上也是可以用GPU的

  • 文本以NodeJS为基础,给出一个文本分类例子œ

  • 按照当前的情况,NodeJS版本其实更适合直接调用Python训练好的模型使用,因为加载速度和推理速度都比Python版本快的原因,如果不是必须要用GPU的话对于小模型更是可以适合配合FaaS等工具更好的实现云AI函数

更多内容和代码可以参考这个REPO https://github.com/qhduan/bert-model/

TensorFlowJS/NodeJS的限制

  • 一些算子不支持,例如python版本有的tf.strings.*下面的算子

  • 虽然NodeJS版本可以加载TensorFlow 2.x saved model格式,但是不能继续训练(python是可以的)

  • 训练速度还是比python的慢

测试环境准备

数据方面这里我们用之前ChineseGLUE https://github.com/ChineseGLUE/ChineseGLUE 的测试数据机LCQMC。这是一个判断两个问题是否等价的数据集,例如“喜欢打篮球的男生喜欢什么样的女生”和“爱打篮球的男生喜欢什么样的女生”等价。

注:新版本ChineseGLUE已经变为CLUEBenchmark https://github.com/CLUEbenchmark/CLUE ,并没有这个数据集了。

$ curl --output train.json https://deepdialog.coding.net/p/dataset/d/dataset/git/raw/master/LCQMC/train.json
$ curl --output dev.json https://deepdialog.coding.net/p/dataset/d/dataset/git/raw/master/LCQMC/dev.json

下载中文BERT的词表,几乎所有的中文BERT都是基于最开始谷歌发布的词表的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值