行秩列秩一定相等吗_从不同角度看行秩与列秩

线性代数中,

有那么几个神秘又神奇的东西,

总是让初学它的人琢磨不透,

无法

理解,其中就有矩阵的行向量和列向量的关系,为

什么一个矩阵的行向量里有

多少个线性无关的向量,

列向量里就一定也有多少个线性无关的向量呢?或者考

虑稍微简单一点的问题,一个方阵,为什么行向量线性无

关或线性相关列向量

就一定也线性无关或相关呢?行秩为何等于列秩?

这本来应该是一个基本又简单的事实。

但是,

请回忆一下你当初初学线性代数时

的内容编排顺序,是怎么引入这个问题的,当时又是怎样解决这个问题的?

传统的教材编写思路是从线性方程组开始整个线性代数话题的引入,

这个过程中

定义行列式和矩阵,

n

元数组引入向量,

线性相关和无关等概念,

讨论解存在

的条

件,解的结构,等等。总之,一切以方程组为核心,给人的感觉就是线性

代数就是方程组的理论,一切讨论的目的都是为了解决小小的方程组问题。

在这个过程中,

有一个矩阵行秩等于列秩的命题,

此时学生只了解方程组理论和

行列式,

因此这时对这个问题的解释当然也无法离开方程组或行列式。

下面简述

两个典型的教材中的证明方法:

第一个证明来自陈志杰《高等代数与解析几何》。

证明:

首先,

矩阵的初等行变换不改变矩阵的行秩,

初等列变换不改变矩阵的列

秩。

这是由向量组的初等变换不改变向量组的线性相关或无关性保证的,

即将某

个向量乘以非零的倍数、

将某个向量加到另一个向量上,

都不改变向量组的线性

相关或无关性。

接着证明矩阵的初等行变换不改变矩阵的列秩。

A

m*n

阶矩阵,任意从

A

n

个列向量中选取

k

个列向量

a1,a2,„,ak,它

们线性无关的充要条件是线性方程组

a1×1+a2×2+„+akxk=0

只有零解。而对

矩阵

A

进行初等行变换不改变此方程组的解,

因此不改变这

k

个列向量的线性相

关或无关性。这说明

A

的列

向量的秩在矩阵的初等行变换中不变。同理矩阵的

初等列变换不改变矩阵的行秩。

接下来,可以把

A

经过初等行变换和初等列变为只有对角线上有

1

0

,其它位

置都为

0

的矩阵,

在这个过程中行秩和列秩都不改变,

从这个矩阵中看出行秩等

于列秩,因此原来的矩阵行秩也等于列秩。

第二个证明来自北大数学系几何与代数教研室前代数小组编《高等代数》

证明:

考虑线性方程组

AX=0

,首先证明如果未知数的个数超过

A

的行秩,那么

它有非零解。设

m*n

阶矩阵

A

的行秩为

r

,考虑方程组

AX=0

,它由

m

个方程

n

个未知数组成。

A

的行向量中选取

r

个线性无关的行向量,

重新组合成矩阵

B

那么方程组

AX=0

BX=0

同解。

这时,

如果

B

的列数大于行数,

那么方程组

BX=0

必有非零解,从而

AX=0

也有非零解。

接着证明行秩等于列秩。设

m*n

阶矩阵

A

的行秩为

r

,列秩为

s

。考虑

A

的任意

r+1

个列向量组成的矩阵

C

因为

C

的行秩不大于

r

(

因为

C

的行向量都是

A

向量的一部分分量组成的),所以

CX=0

有非零解,这说明这

r+1

个列向量线性

相关。所以

A

的列秩最大为

r

,即

s<=r

。同理可证

r<=s

,因此

s=r

有了行秩等于列秩的性质,

完全可以用行秩或列秩定义矩阵的秩了。

编写教材的

人和老师们都认为,

只要能够顺利定义出矩阵的秩,

这个证明就足以满足初学时

的需要了,既没有必要又没有条件再将它深入地挖掘下去。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值