使用python计算crf根据模型的分词结果的准确率,召回率和F值
测试文件output.txt,第一列是字,第二列是人工标注的分词结果,第三列是根据模型使用crf得到的分词结果,
字母B:单词的首字母;字母E:单词的尾字母;字母BE:单词的中间字母
格式如下:
团 B B
圆 E E
是 BE BE
春 B B
节 E E
千 B B
年 E E
不 B B
变 E E
的 BE BE
... ... ....
python代码如下:
1、读入output.txt文件,并建立相应的列名为'character','train','test'的dataframe
importpandas
line=[]
file=open(r'E:\大三下\王东波\CRF 相关\CRF 相关\crf++ tools\output.txt','r',encoding='utf-8')for i infile.readlines():
i=i[0:-1]if len(i)!=0 and len(i)!=1:
line.append(i.split('\t'))
df=pandas.DataFrame(line,columns=['character','train','test'])
【注:使用df.loc添加新行的速度太慢,因而使用列表向dataframe转化】
2、构建新的dataframe保存分词准确的部分
correct=df[df.train==df.test]
3、计算召回率、准确率和F值
for i in ('B','C','E','BE'):
R=sum(correct.test==i)/sum(df.train==i)
P=sum(correct.test==i)/sum(df.test==i)
F=R*P*2/(R+P)print(i,':\n','

这篇博客介绍了如何使用Python读取output.txt文件,该文件包含人工标注和模型预测的分词结果,然后通过比较两列数据计算Crf模型的分词准确率、召回率及F值。代码示例展示了具体的计算过程,并给出了不同类型的字符(B, C, E, BE)的评估指标。"
99657479,7490820,SpringBoot中注册Servlet、Filter和Listener,"['SpringBoot开发', 'Web开发', 'Servlet', 'Filter', '监听器']
最低0.47元/天 解锁文章
4374

被折叠的 条评论
为什么被折叠?



