数学建模概述-数学建模学习资源网站
1数学建模概述
数学模型
数学建模过程
数学建模示例
建立数学模型的方法和步骤
数学模型的分类
1数学模型
模型:是我们对所研究的客观事物有关属性的模拟,它应当具有事物中使我们感兴趣的主要性质,模拟不一定是对实体的一种仿造,也可以是对某些基本属性的抽象。
直观模型: 实物模型,主要追求外观上的逼真。
物理模型:为一定目的根据相似原理构造的模型,不仅可以显示原型的外形或某些特征,而且可以进行模拟试验,间接地研究原型的某些规律。
思维模型,符号模型,数学模型
数学模型:
1)近藤次郎(日)的定义:数学模型是将现象的特征或本质给以数学表述的数学关系式。它是模型的一种。
2)本德(美)的定义:数学模型是关于部分现实世界和为一种特殊目的而作的一个抽象的简化的数学结构。
3)姜启源(中)的定义:是指对于现实世界的某一特定对象,为了某个特定的目的,做出一些必要的简化和假设,运用 适当的数学工具得到一个数学结构。
数学结构:是指数学符号、数学关系式、数学命题、图形图表等,这些基于数学思想与方法的数学问题。
总之,数学模型是对实际问题的一种抽象,基于数学理论和方法,用数学符号、数学关系式、数学命题、图形图表等来刻画客观事物的本质属性与其内在联系。古希腊时期:“数理是宇宙的基本原理”。文艺复兴时期:应用数学来阐明现象“进行尝试”。微积分法的产生,使得数学与世界密切联系起来,用公式、图表、符号反映客观世界越来越广泛,越来越精确。费马(P.Fermal 1601-1665)用变分法表示“光沿着所需时间最短的路径前进”。牛顿(Newton 1642-1727)将力学法则用单纯的数学式表达,如,牛顿第二定律:
结合开普勒三定律得出万有引力定律
航行问题:
甲乙两地相距750千米,船从甲到乙顺水航行需30小时,从乙到甲逆水航行需50小时,问船速、水速各多少?
用分别代表船速、水速,可以列出方程
解方程组,得
答:船速、水速分别为20千米/小时、5千米小时。
2数学建模过程: 归纳
验 求
证 解
解释
实现对象和数学模型的关系
3数学建模示例:
建模示例之一 椅子的稳定性问题
问题:将四条腿一样长的正方形椅子放在不平的地面上,是否总能设法使它的四条腿同时着地,即放稳。
1假设
1)地面为光滑曲面;
2)相对地面的弯曲程度而言,椅子的腿是足够长的;
3)只要有一点着地就视为已经着地,即将与地面的接 触视为几何上的点接触;
4)椅子的中心不动。
2 建模分析
表示A,C与地面距离之和,表示B,D与地面距离之和,则由三点着地,有
不失一般性,设初始时:
y
B
B
A
C A x
O