最短路算法的证明_单源最短路:Bellman-Ford算法 及 证明

描述:

求图中某一点到其他任一点的最短距离。

操作:

1. 初始化

结果保存在一个dist数组里,源点的结果初始化为0,其他初始化为无穷大(如INT32_MAX)。

2. 计算:

两重for循环,第一层,迭代n - 1次(n为节点数);

第二层,遍历每条边,如果其源点对应的距离加上边权重小于终点对应距离,则更新终点最短距离;

3. 判断负权环:

当步骤二计算完时,遍历左右边,看是否存在某条边(u, v),有d[u] + w(u, v) < d[v],即还可以更新,如存在则存在负权环。

证明:

求最短路证明:

一。假设某点与源点不连通。

由于初始化时,除了源点距离初始为0之外,其他点都初始化为无穷大,如果不连通,则某点所在的连通图的任一条边都不会导致更新。

二。假设x点与源点连通。

每个点都存在自己的最短路,为(e0, e1, e2, ..., ek)。

显然,源点只要经过n - 1条边就可到达任一点;  (一)

现只需证明,对x点,每次迭代(松弛),至少有一条最短边ei的距离被找到,除非已经到达x点。  (二)

对于第一次迭代,必定更新和源点相连的所有边(如果是有向图,则是指出去的),由于源点距离是0,和其相连的都是无穷大。

而这些往外连的边中,必有一条是x点的最短路上起始的一条边。

则设有点k,这个点是x最短路上的一个点,下一次松弛,必能找到下一个点,且也是x的最短路上的一个点:

由于下一次松弛将更新与k相连的所有点。

有(一)(二)可得,上面两次迭代可以找出最短路。

而关于负权环的判断:

由于负权环的存在,可以通过不断绕着走从而减小环上各个点的距离。

所以即使迭代完成,当判断是否还能更新时,会发现还是可以更新的,这就判断了存在负权环。

代码:

简单输出最短路,如果要路径可以为每个节点储存一个最后一次访问的节点,逆向遍历一遍即可得到路径。

#include #include#include

using namespacestd;structEdge {intstart;intend;intweight;

};boolBellmanFord() {int source = 0;intvex_num, edge_num;

cout<< "Input the number of vertexs and edges:" <

cin>> vex_num >>edge_num;

vectordist(vex_num, INT32_MAX);

dist[source]= 0;

vectore;for (int i = 0; i < edge_num; i++) {

Edge et;

cin>> et.start >> et.end >>et.weight;

e.push_back(et);

}for (int i = 0; i < vex_num - 1; i++)for (int j = 0; j < edge_num; j++)if (dist[e[j].start] + e[j].weight < dist[e[j].end] && dist[e[j].start] !=INT32_MAX)

dist[e[j].end]= dist[e[j].start] +e[j].weight;for(int i = 0; i < dist.size(); dist++)

cout<< dist[i] <

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值