游戏中的数学与物理学 第二版_[极致科普文]—斯诺克中的数学和物理学

1819e9b185cffd745c4162fd26760bb1.png

大家好!这是一篇巨长的文章。就算是忽略了证明和图片也还是很长。但愿大家能有耐心读完吧。

还是老规矩,带

的证明和小节选读,其余证明均可读。

最后,这种长文中我很有可能会犯错。如果大家发现有错误请具体指明,我会来更正,感谢大


这里是一则小广告:

关注作者请点击这里哦:zdr0

我的专栏里面不仅有学习笔记,也有一些科普文章,相信我的专栏不会让您失望哦~大家可以关注一下:数学及自然科学

记得点赞加收藏哦~

创作不易,请赞赏一下支持一下作者吧[期待]~

文章中如果有错误的话还请各位大佬多多斧正,感谢!

-尽力写最好的讲义,尽力写最好的科普


题图:火老师(Ronnie O'Sullivan)第1000杆 Century Break 现场照片。

打台球也是本人很喜爱的一项业余爱好。我比较“擅长”中式8球和美式8球。像斯诺克这种台球中的高大上者,一个是能够接触的机会并不多,另一个就是因为接触的机会不多,所以技术也就比较差。但是因为对这项运动很是热爱,所以,打算写一篇理论性的文章来“研究”一下它。需要说明的是,大家将这篇文章单纯的当成是一个趣味科普文就好,不要想着看完这篇文章就能成为一个斯诺克高手了hhh,想成为高手是需要多去实践的,球打得多了,自然就得心应手了。

这篇文章的结构是这样的,首先我先对斯诺克这项运动做一个简单的介绍,然后为了进行进一步的讨论我会带大家一起复习一些数学和物理的基本知识(这里基本不会涉及到高数),复习完毕之后我将从瞄准技术开始谈起(这一部分属于斯诺克中的数学部分),然后我会谈到母球的加塞效果(这一部分属于斯诺克中的物理学部分),这一部分介绍完毕之后本篇文章结束。


斯诺克运动简介

斯诺克 (snooker) 是一种落袋式台球运动。此项运动使用的球桌长约 3569 毫米、宽 1778 毫米,台面四角以及两长边中心位置各有一个球洞,使用的球分为1个白球(母球)、15 个红球(每个一分)和 6 个彩球(黄(2分)、绿(3分)、棕(4分)、蓝(5分)、粉红(6分)、黑(7分)),共 22 个球。击球顺序为一个红球、一个彩球直到最后一个红球与其后的一个彩球全部落袋,然后以黄、绿、棕、蓝、粉红、黑的顺序逐个击球,最后以得分高者为胜。斯诺克的满分为 147(

) 分(单杆(即无中断),且对手无犯规) ,Century Break 是指单杆破百。目前这两项记录的保持者均为英格兰球手 Ronnie O'Sullivan (题图中的巨佬),分别为 15 次单杆 147 (其中包括最快 147 : 5分20秒) 和
1043 次 Century Break 。

我会将Ronnie 的最快147的视频连接放在文章的最后,如果各位朋友有兴趣的话可以欣赏一下。

39e4bfdc0b9e1a92f3b168ef6e346d65.png
图片1:斯诺克。

而单词 "snooker" 本身有“障碍” 的意思,所以,斯诺克运动的另一个精髓就是在自己分数无法超越对手的时候可以通过“做斯诺克”(即设法让对手无法击打目标球)的方式来使对手犯规,从而给自己加分。此时对方需要“解斯诺克”来防止自己犯规。斯诺克大师们都是“做斯诺克”和“解斯诺克”的高手。


知识复习

正弦定理

523cc964dfe45124abe8483e98b854fd.png
图片2

在如图片2所示的任意平面三角形

中,
分别为角
的对边,则有:

在式

中,
为平面三角形
的外接圆半径。式
便是正弦定理的数学表达式了。

20239abfebc077b425129bcc41c55c5c.png
图片3:正弦定理和余弦定理证明用图。

如图片在三角形
中,过点
做边
的垂线
交边
与点
。则三角形
和三角形
均为直角三角形。现在设线段
的长度为
。在三角形
中有:

在三角形
中有:

则由式
和式
可得:

再做其他两条边上的垂线,同理可证:

等于
的这一步与本文章无关,所以我没有进行证明。

余弦定理

同样是在图片2所示的任意平面三角形

中,还有以下关系式:

到式
为余弦定理的数学表达式。

我们依然使用图片3证明余弦定理。在三角形
中有:

在三角形
中有:

则:

对等式
两侧同乘
可得:

在另外两条边上做垂线同理可得:

我们将式
和式
求和可得:

即:

将式
求和或将式
求和可以分别证明式
或式

反射定律

a547c424a567360129afd89fbe6fcc12.png
图片4:反射定律。

如图片3所示,

为入射光线,
为反射光线,灰色矩形为另一介质,
为介质分界面的法向量。则有:

f59af02f1cd2df158b3ee4a253bd3c30.png
图片5:反射定律证明用图。
注:
1. 光的反射定律可由费马原理或者电磁场的边界条件导出。
2. 图片4中我使用了
偏振的入射电波和反射电波来“表示”光线。

如图片5所示,光线从点
出发,反射至点
。光线从点
到点
的光程为:

光线从点
到点
的光程为:

所以,光线从点
出发,反射至点
的总光程为:

根据费马原理, 光线在真空中传播的路径是光程为极小值的路径(光程最短原理)。则我们对式
求变量
的导数可得:

由于法线垂直于介质分界面,所以,
,所以,
,所以:

将式
和式
带入到式
可得:

所以:

如果不考虑周期性,则有:

碰撞问题
注:以下所述的系统均考虑重力为系统内力。

正碰问题(完全弹性)

两物体碰撞前后系统的动能和动量守恒。没有出现额外的能量转化。

59feb3d57db4d3432d7b755bca88fb4f.png
图片6:正碰之前。

考察如图片6所示的系统。该系统中的水平面(灰)是光滑的,在这个水平面上有两个小球,质量分别为

。其中质量为
的小球的初速度为
,质量为
的小球的初速度为
,且水平向左运动(且由于质量为
的小球在水平方向上不受其他力的作用,所以,根据牛顿第一定律,它在水平方向上做的是匀速直线运动)。

由于我们考虑的是完全弹性碰撞,所以,系统的动能和动量在碰撞前后守恒。

44bbdb4a0f36b41f0724af821f947654.png
图片7:正碰之后。

如图片7所示,是两球碰撞之后的情况。在正碰之后两小球的速度分别是:


我们设质量为
的小球的碰撞后的速度为
,质量为
的小球的初速度为
。则我们可以列写该系统的动能守恒方程和动量守恒方程:

其中,
表示的速度
的大小。

5fad3a230a1fd9cfa65927ff7e63fafb.png
图片8:图片7加上坐标轴。
为了进一步说明问题,我们给图片7加上了坐标轴,如图片8所示。由于是一维的碰撞问题,所以,我们可以将所有的速度都写为:

其中,
方向上的单位矢量,即
。这样,我们就可以直接将方程
转化为标量方程了:

解方程组
得:

特别的,当两个球的质量相等,即

时,式
和式
可以简化为:

可见,当两个球的质量相等时,在这种理想的正碰问题中,两球正碰后速度会发生交换

注意,这里说的是 速度会发生交换。即如果是两个质量相同的物体 对头正碰的话那么 交换的不仅仅是速度的大小,还有速度的方向!见图片9中上者。下者是我们刚才讨论的模型。

1bb3ded611b09ce603fecc0763ac1c8c.gif
图片9:质量相同的两个物体以不同的速度对头碰撞和追尾碰撞(完全弹性)。图片来源:维基百科。

正碰问题(完全非弹性)

非弹性碰撞指的是碰撞前后系统的动能有一部分转换为了内能。而完全非弹性碰撞则指的是将动能尽可能最大化的转换为内能。这时两个物体将“粘在”一起以一个共同的速度运动。下面我们就来研究一下这种情况。

正碰之前的图我们还是使用图片6,而且条件也与之前所述一致。现在我们来看碰撞后的情况:

c029b44712f66a32aaa7c6ef4d09caba.png
图片10:完全非弹性碰撞之后的图。

完全非弹性碰撞之后,两个球“粘在”一起并以共同速度

运动。这个共同速度
的大小是:


由图片6中的条件为碰撞前之前的条件,则我们可以列出以下动量守恒和能量守恒方程:

其中,
为完全弹性后转化的内能。且由于:

我们依然使用的还是图片8中的
轴。则我们可以将式
转化为标量方程:

则速度
的大小我们仅仅通过动量方程即可求解出为:

转化的内能

为:


将式
带回到式
即可求出转化的内能

现在我们来证明一下为什么在完全非弹性碰撞时内能的转化量是最大的。


这里我们直接使用图片6碰撞前和图片8碰撞后的图,但是要考虑的是非弹性碰撞(注意这里不是完全非弹性碰撞)。设非弹性碰撞的内能转化为
。而且由于仍是一维正碰,所以图片8中的坐标轴不会改变,所以,下面我直接列出这种情况下的标量方程:

则由式
中的动量方程可以求出:

将式
带回到式
中的动能方程中可得:

现在我们对式
求导可得:

我们令式
为零可得:

的结果说明,函数
时取得极值。那么此时,由式
可以确定
的值为:

这就说明了当函数
取得(局部)极值的时候,两个球的速度是一样的,所以可将两个球想象成“粘在一起”运动。

现在我们再来说明函数
取得的(局部)极值是一个(局部)极大值。

我们对函数
求二阶导:

所以,函数
取得的(局部)极值是一个(局部)极大值。此极大值为:

特别地,当两球的质量相等时,共同速度

的大小为:

c716954594eaf17f062d0e09ac1515e7.gif
图片11:质量相同的两个滑块完全非弹碰撞。图片来源:维基百科。

实际碰撞问题

实际的碰撞问题是完全弹性碰撞和非完全的弹性碰撞的混合情况。这种情况下,我们需要定义一个恢复系数

台球所用的树脂材料的恢复系数是很不错的。说一种材料的恢复系数好是指其恢复系数

当:

  • 时,即
    时,则根据之前的讨论,为完全非弹性碰撞情况;
  • 时,即
    时,则根据之前的讨论,为完全弹性碰撞情况。

对于一个实际的碰撞问题来讲,两球碰撞后的速度,还有转化为的内能都可以通过恢复系数

来表示,具体来讲:

矢量的分解

0cd98dd73883f07ded1669794f0d3189.png
图片12:矢量的分解示意图。

如图12所示,是两种最常见的矢量分解方式。左边的图是将矢量

在一个
平面斜角坐标系中进行分解,而右图是将矢量
在一个
平面直角坐标系中进行分解。无论在那种坐标系中分解,都有:

下面我们将主要在平面直角坐标系中研究问题。


图片12左侧的分解更为常见。其中,
称为
协变基矢量
称为
逆变分量
我们也可以将矢量矢量
在与图片12的左图中的
对偶的坐标系中进行分解,即有:

此时,
称为
逆变基矢量
称为
协变分量。
可见,平面直角坐标系是平面斜角坐标系的特殊情况。

二维碰撞问题(斜碰)

一般情况

7be5bb336450038537cd2bb6d2848fd3.png
图片13:二维碰撞示例(一般情况)。

我们还是考虑一个不受外力作用的系统。如图片13所示,初始,红色球速度为

,蓝色球以速度
,斜撞上红色球,之后两球分道扬镳。假设该系统不受任何外力作用,且碰撞发生在水平面上(图片13为俯视)。

图片13中两球碰撞后的速率分别为:


设碰撞为完全弹性的,且碰撞之后两球的速度分别为
,则碰撞后两球的动量分别为:

由于碰撞之前假设红色的球是静止的,那么,两球的初始动量分别为:

由于我们假设这个系统是不受任何外力作用的,那么我们有动量守恒方程:

也就是说矢量
(对应图片12中的
)等于矢量
(这里选择对应于图片12中的
)和矢量
(这里选择对应于图片12中的
)的和。也就是说我们是将矢量
进行了分解,一个分量是矢量
,而另一个分量是矢量
。如果我们采用一般分解的话则有(对应于图片12的左图和图片13左上图):

选定了基矢量之后,我们就可以将矢量
和矢量
分别写成:

为了进一步的求解,我们需要再将矢量
和矢量
方向上进行正交分解(图片13左下图)。即:

且此时:

则:

这样分解的目的是要将一个二维的完全碰撞问题转化为两个(即
方向和
方向上的)一维的完全弹性碰撞问题。对于一维的弹性碰撞,我们知道它是动量守恒的,所以,经过转化后的两个一维的弹性碰撞
在各自的方向上都是守恒的。即我们可以列出动量守恒方程(图片13左下图):

且:

将式
代入到式
中可得:

再将式
代入到式
中可得:

解方程组
可得:

特殊情况

下面,我们再来看一种特殊情况,即两小球质量相等时候。

2ca0059904936bd1331cdcb3f6f8d901.png
图片14:二维碰撞示例(质量相等)。

当质量

时我们有以下结论:

两球碰撞后的运动方向垂直;

两球的速率分别为:

1e340fcc9736a1fdc7d42ddf5a772f71.gif
图片15:质量相等的两个硬币的斜碰。图片来源:维基百科。
由于前提条件不变,所以仍可对该系统列写动能守恒和动量守恒方程:

且由于质量
,所以,式
可以化简为:
式说明矢量
组成一个矢量三角形,且三者的模满足勾股定理。即说明矢量
正交。
当质量
相等时,由
易知
,进而由式
立即可得:

以及:

刚体动力学

角动量和与力矩(本小节选读)

b0b18bd889f1dbbd6f88081ca8f7d608.png
图片15

一个质量为

的质点以动量
在一个任意的路径
上运动。我们定义
矢量积

为质点

对应图15所示坐标原点的角动量。显然,
同时垂直于

在空间直角坐标系下的质点

的角动量分量分别为:

其中:

假设在图片15中,质点

一个平面内运动,
时刻的位矢是
,速度是
,则我们可以将速度分解为沿位矢方向的分量
,和垂直于位矢的分量
极坐标系),则我们可以将式
写为:

且:

在式

中,
是因为根据矢量积的定义式:

可知,由于

是沿着位矢
的方向的,所以,两者的夹角为
,即:

结论:在一个平面内运动的质点

,其角动量总是垂直于
平面。

现在,我们对式

的两侧同时求时间
的导数有:

在式

,因为

根据牛顿公理:力是动量变化的原因。所以,我们可以将力定义为:

则可将式

改写为:

其中,

为作用在质点
上的力
对应图15所示坐标原点的力矩。

结论:角动量的时间变化率等于力矩。

或者说,当总的力矩总等于零时,角动量

为常矢量

转动惯量与旋转能量(本小节为选读)

我们考察一个膨胀体,其绕着一个固定轴

转动,如图片16所示:

e3861cf8b3cb304b18ce7b780bc598f8.png
图片16。图片来源:Wolfgang Demtröder—《Experimentalphysik 1》。

其中,

是膨胀体的质心。质量微元
与转轴之间的垂直距离为
,且具有速度
。由于
,则膨胀体的质量微元
的动能为:

其中:

现在,我们对多所有的质量微元求和并取极限可以得到整个膨胀体的转动能量:

我们定义:

为该膨胀体关于转轴

的转动惯量。其中,
是膨胀体的质量微元
到转轴
的垂直距离。则膨胀体的旋转能量定义为:

膨胀体的质量微元

的关于转轴
的角动量为:

则整个膨胀体的角动量为:

谈谈角速度的问题。 在二维坐标系中,角速度是一个只有大小没有方向的 伪标量,而非标量。标量与赝标量不同的地方在于,当
轴与
轴对调时,标量不会因此而改变正负符号,然而伪标量却会因此而改变。角度及角速度则是伪标量。以一般的定义,从
轴转向
轴的方向为转动的正方向。倘若座标轴对调,而物体转动不变,则角度的正负符号将会改变,因此角速度的正负号也跟着改变。 在三维坐标系中,角速度变得比较复杂。在此状况下,角速度通常被当作向量来看待;甚至更精确一点要当作
伪向量。它不只具有数值,而且同时具有方向的特性。数值指的是单位时间内的角度变化率,而方向则是用来描述转动轴的。概念上,可以利用 右手螺旋定则来标示角速度伪向量的正方向。原则如下: 假设将右手(除了大拇指以外)的手指顺着转动的方向朝内弯曲,则大拇指所指的方向即是角速度向量的方向。 正如同在二维座标系的例子中,一个质点的移动速度相对于原点可以分成一个沿着径向以及另一个垂直径向的分量。举例而言,原点与质点的速度垂直分量的组合可以定义一个 转动平面,质点在此平面上的行为就如同在二维坐标系中的状况下,其转动轴则是一条通过原点且垂直此平面的线,这个轴订定了角速度伪向量的方向,而角速度的数值则是如同在二维座标系状况下求得的伪标量的值。当定义一个指向角速度伪向量方向单位向量
时,可以用类似二维坐标系的方式来表示角速度:

使用矢量积可以写为:
[1]

匀质球的转动惯量

考虑一个如图片17所示的匀质球:

b8291b8e19b18609649bf5e58789a81f.png
图片17:匀质球。图片来源:Wolfgang Demtröder—《Experimentalphysik 1》。

则该匀质球关于通过球心的转轴的转动惯量为:

其中,

为匀质球的质量,
为匀质球的半径。
由于是匀质球,且根据球的对称性可知,所有对应于通过球心的转轴的转动惯量都是相等的。设图片17中的匀质球的密度为
,显然,密度
为常数。所以对于质量微元
有:

其中,
。则:

刚体定轴转动定律

我们考察图片16中的膨胀刚体。假设该刚体只能够绕

轴(
轴)转动,能够引起转动的力矩只有
,因此,刚体定轴转动的动力学方程为:

其中,

为刚体对转轴
的角动量的大小,且
为该刚体的转动惯量,
为刚体转动的角速度。所以:

当刚体的转动惯量为常数时

,此时:

其中,

为刚体定轴转动的
角加速度。由于刚体为定轴转动,所以可以不写定轴
,即式
可以简化为:

这就是刚体的定轴转动定律。

可见,刚体的定轴转动定律和牛顿第二定律的数学表达式

(标量)十分相似。在牛顿第二定律的数学表达式中,
为质点所受的合外力,
为质点的质量,
为质点的加速度,而在刚体定轴转动定律中,
为刚体所受的合外力矩,
为刚体的转动惯量,
为刚体定轴转动的角加速度。而且质点的质量
反应了质点的运动惯性,而
反应了刚体做定轴转动的惯性。

摩擦力

摩擦力的性质以及产生的机理比较复杂,我们在这篇文章中就不进行讨论了。下面,我来简单介绍三种摩擦力。

静摩擦力

387d832ed4fad042562cfc1b1b82dcb0.png
图片18:静摩擦力示意图。

如图片18所示,一个质量为

方块被放置在一个水平面上。为了能让它在水平面上运动,我们需要给它施加一个力
,这个力
的大小可由弹簧测力计测得。由于这个力
的存在,使得方块与接触面之间有了相对运动的
趋势,于是便产生了一对阻止相对运动的力,这个力称为 静摩擦力。如果没有静摩擦力的话那么方块与接触面之间会发生相对滑动。值的注意的是,每个物体所受的静摩擦力的方向与该物体相对于另一物体的运动 趋势的方向相反。实验证明,静摩擦力的大小随引起相对运动趋势的外力的大小而变化,其值介于
到一个
最大静摩擦力
之间。实验表明,只要力
的大小
不超过
最大静摩擦力的大小
,那么这个方块就不会发生滑动。最大静摩擦力的大小为:

其中,

为方块所受的
正压力(法向力)的大小。
称为
静摩擦系数。静摩擦系数的值取决于接触体的材料及其表面的性质(表面的出粗糙程度、干湿程度等等)。即最大静摩擦力的大小正比于正压力(法向力)的大小。现在,我们将这个滑块竖起来,我们发现,即便是滑块与水平面之间的接触面积发生了改变,最大静摩擦力的大小
是不变的。即
与两者的接触面积无关。

静摩擦力的理解算是一个小难点。这里我来通俗的解释一下。

3cb49de17499db5c30bb7b9715b751a8.png
图片19:静摩擦力解释用图。

假设现在你在退一个放置在水平面上的质量为

的箱子,但是由于箱子太重了,一开始是推不动的,虽然推不动,但是箱子与水平面之间出现了相对运动的趋势,即箱子相对于水平面向前运动,所以,根据上面对于静摩擦力的叙述,箱子所受的静摩擦力
是水平向后的。由于箱子没能被推动,所以在水平方向是箱子是静止的(即箱子在水平方向上受力平衡。当然了,在竖直方向上也是)。这就说明只要箱子
没有被推动,那么你给箱子施加多大的力,箱子所受的静摩擦力
始终会等于你推箱子的力,直到推箱子的力达到最大静摩擦力
。所以在图片19中,在推箱子的力达到最大静摩擦力之前,
曲线是一条斜率为
的直线。那么箱子被推动之后会怎样呢?我们来看下一小节——
滑动摩擦力

滑动摩擦力

当在图片18中,作用力

的大小大于极限大小
,即
时,方块与接触面之间产生了相对运动,这时仍存在一对阻止物体相对运动的摩擦力
,称为
滑动摩擦力。实验表明,滑动摩擦力的大小
也正比于正压力的大小
,即:

其中,

滑动摩擦系数。静摩擦系数的值也取决于接触体的材料及其表面的性质(表面的出粗糙程度、干湿程度等等)还有方块和水平面的相对运动速度。对于一个给定的接触面来讲,滑动摩擦因数
的值总是小于静摩擦系数
的大小。

4e9b7edf85f4f889591840d4c4e34ab9.png
图片20:滑动摩擦力示意图。

在图片20中,我们可以看出,滑动摩擦力的大小

是略小于最大静摩擦力的大小
的大小的。这一点我们应该会有体会,一开始箱子推不动,但是箱子一旦被推动起来,以后维持箱子运动所需要的力比使它运动起来的力要小(因为对于一个给定的接触面来讲,滑动摩擦因数
的值总是小于静摩擦系数
的大小,而且箱子所受的正压力总是不变的。所以
)。而且无论将来你用多大的力来维持箱子的运动,箱子所受的滑动摩擦力都是不变的,因为它的大小正比于箱子所受的正压力的大小。所以,在图片20的函数图像中,紫色的水平直线就是箱子相对于水平面滑动起来之后它所受的滑动摩擦力的大小。

图片20中的那一小段黑色曲线可以看做是箱子刚要开始滑动到开始滑动之间的过渡。

滚动摩擦力

b3d518868d12af65c81b60180b70502e.png
图片21:滚动摩擦力。

如图片21所示,当圆形物体在一水平表面上滚动时,由于沿滚动体与表面之间的接触线的原子之间的吸引力以及表面的变形,也会产生摩擦力

。为了以恒定角速度滚动圆形物体,我们需要一个围绕接触线的力矩,该力矩仅能补偿滚动摩擦的相反力矩。此外,压痕周围有一个小凸起,滚动时必须克服。实验表明,这个力矩的大小
也正比于物体所受的法向力
的大小,即:

其中,

称为滚动摩擦系数。与静摩擦系数和滑动摩擦系数不同的是,这个
滚动摩擦系数是有量纲的,其量纲为
。可见,
滚动摩擦力是一个力矩,而不是力。滚动摩擦力比较复杂,本人也没有深入研究过。大家如果有兴趣可以去读 [2]

这里提供一种测量滚动摩擦系数的方法。

e9fcccc4772f7d5fdd1c96d73ea20cd7.png
图片22:滚动摩擦系数的测量。

在图片22中,我们原本将该圆柱体放置在一个水平面上,其中

为接触线。然后我们将这个水平面
缓缓地抬起,直到这个圆柱体刚要向下滚动的时候,我们停止抬动,并记录此时的夹角为
。则重力的水平分量
在接触线
处的力矩
(逆时针。
从圆心指向
)将与滚动摩擦力
(顺时针)平衡。而圆柱体受到的正压力是
,所以,滚动摩擦力为
。即:

则:

eb1d17506c536dfe4ad9b4a141e69216.png
图片23

如图片23所示,设球的质心速度大小为

,经过时间
之后,点
转动的弧长对应的圆心角为
,质心运动的距离为
。设球的半径为
,则图片23中的红色弧长为:

且:

时,有:

称为
Rolling without Slipping 条件。即此时,滚动体 质心的速率等于该滚动体的半径乘以滚动体 纯旋转时的角速率。

时,有:

时,有:

所以,此时质心的速率为:

Rolling without Slipping 的特点是:滚动体与平面接触点的速率

总为 0

f643d8b4e1736b9e048cc2657682c51c.png
图片24:Rolling without Slipping.

在图片24中,

另外的两种情形是:

Rolling without Slipping 时,滚动体的总动能为:

其中,

为滚动体对其质心的转动惯量。且由于Rolling without Slipping 时有
。则
可以改写为:

其中,

可以看做是一个
有效质量
,即
,其中
为一个常数。

大前提:母球与目标球的实际半径一致。

瞄准技术

读完了漫长又枯燥的基础知识复习部分,相信大家已经具备了继续向下读的知识水平啦!下面,我们就从瞄准技术开始讲起。

理想瞄准模型的讨论

图片23是理想的瞄准模型。之所以说它是理想的,是因为我们忽略的视觉效应的影响。对于非理想的瞄准模型,我们后面会详细谈到。理想瞄准模型中的母球和目标球的半径均为实际半径。

0e142bd79eff4579e3e9c5d765485235.png
图片25:理想瞄准模型。(厚薄法)

在介绍瞄准技术之前,我们先来介绍一下进球点的概念。

图片23是理想的瞄准模型(从台案上方俯视)。其中白色的圆表示的是母球,红色的圆表示的是目标球。我们现在击打母球,使其击中目标球之后目标球入袋。那么以虚线为边界的白色圆就是当目标球入袋时母球应该处在的位置。此时,母球的球心

、目标球的球心
和袋口的中心
三点共线。则点
称为
进球点

了解了进球点的定义之后,现在可以来谈一谈瞄准了。

一般瞄准的方式有两种,分别是瞄尾法厚薄法。本人平常使用的是厚薄法。这两种瞄准的方法没有高低之分,使用哪种瞄准方式完全取决于个人习惯。

那么下面,我就基于厚薄法来谈一谈瞄准技术。

首先忽略视觉效应。厚薄法指的是通过俯身(几乎平行于台案)观察母球与目标球,并且想象当母球的球心位于进球点时,母球与目标球重合的厚度。在图片23中,这个厚度是

。现在我们借助一些其他的量来求解一下这里理想情况下的厚度
的表达式。

在图片23中,我们将母球所处原始位置的球心与进球点之间的连线和

三点连线之间的夹角(锐角)记为
。且由于进球时母球和目标球必然相切,所以
两点之间的距离就是两个球的半径的距离
。则基于这些基本条件下的理想情况下的厚度
的表达式为:

其中

为球的半径。
我们将图片23放大一下:

862958b5f2607865b689d5a09c03cbd6.png
图片26
在图片24中,过点
向里面的灰色虚线引一条黄色的垂线段,其长度为:

由于在图片24(图片23)中,外面的青色虚线是母球的切线,显然它平行于里面的灰色虚线(里面的灰色虚线是母球所处原始位置的球心与进球点之间的连线)。里面的青色虚线是红球的切线,而且这条切线也平行于里面的灰色虚线(这是必然的,因为母球与目标球的半径是一样的,所以,它们相互重合的厚度也必然是一样的)。所以黄色的线段也垂直于这两条青色虚线。则黄色线段与里面的青色虚线的交点必为目标球的切点。所以
的长度为:

非理想瞄准模型的讨论

现在,我们来讨论一下非理想的瞄准模型。所谓非理想的瞄准模型,是考虑了视觉效应的瞄准模型。首先,先来解释一下何为视觉效应。

相信大家明白一个道理,当我们观察一个物体时,物体离我们越近,那么物体看起来就会显得大一些,而如果物体离我们越远,那么物体看起来就会显得小一些,但无论如何,物体的实际大小是没有改变的。这就是所谓的视觉效应。想象一下你站在一条长而笔直的公路的中间,那么你看到的公路是越来越窄的。

这种视觉效应也会出现在斯诺克运动中。当我们俯身准备击球时,如果目标球距离我们比较远,那么我们会明显的感觉目标球相对于母球“变小”了一些,或者说感觉母球相对于目标球“变大”了一些

87925e5a1a5c0ca77a2d3381e6b8ccb7.png
图片27:斯诺克中的视觉效应。

图片25是6红球斯诺克。可以明显的看出红球相对于母球要“变小”了一些。

下面,我们就来研究一下视觉效应对厚薄法的影响。

在下面的讨论中,我们假设视觉效应影响的是母球,而非目标球。即母球相对于目标球会“变大”一点。我们将分为两步进行讨论,首先讨论母球“变大之后”对厚薄的影响,其次讨论母球球心与进球点之间的、目标球球心之间的距离会使母球“变大”多少。首先先来讨论第一个问题。

f15e29195a2fc453056cf0df7c492bcf.png
图片28:母球“变大之后”对厚薄的影响。

如图片26所示,设母球“变大”之后的半径为

(灰色虚线,大)。灰色的小圆母球没有“变大”时的大小(即理想瞄准模型。半径为实际大小
)。根据我们在理想瞄准模型中的讨论可知,灰色小圆和红色的圆重合部分的厚度是
(上图中未画出,请大家自行脑补),并且设在理想的瞄准模型下两球的连心线长度为
。设在考虑视觉效应的实际瞄准模型中,两球重合的
最大厚度
,则
的长度为:

再将式

代入到式
中可得:

显然,如果是理想瞄准模型,则

,进而

在式

中,我们并不知道
究竟是多少。所以,这就是我们接下来要讨论的问题:母球球心与进球点之间的、目标球球心之间的距离会使母球“变大”多少。

be45f14a8604a5a94275919bafa6d105.png
图片29:母球球心与进球点之间的、目标球球心之间的距离会使母球“变大”多少。

如图片27所示,假设已知的量都有:母球球心与进球点之间的距离

;母球球心与目标球球心之间的距离
,角度
可以不知,因为可以使用余弦定理
求出),当然还有球的实际半径大小
。则
之间的关系为:

其中:

在证明之前我想说两句,图片27实际上俯视图。容易想象,在俯视图中是没有视觉效应的。但是为了研究问题,我们只好假设母球真的被“放大”了。即在俯视图中仍保留视觉效应。


首先我们先来证明式
。使用正弦定理
。在
中,有:

则:

由于当
充分小时,有:

所以:

再来证明式
。使用余弦定理
。在
中,有:

即:

中,有:

即:

解得:

由于这里
是锐角,所有必有
,所以,在
的前提下,其中一个解
,我们将这个解舍去,最后保留解:

其中,
已经在式
中确定过了,将式
代入到式
中可得:

再由图片27中的几何关系
得:

值得注意的是,已知量的不同会出现不同的解法。比较可惜的一点是目测通过方程

是解不出
的。

这里有一种特殊情况:即直球的情况。所谓直球是指母球的球心、进球点、目标球的球心和袋口的中心四点共线。此时总有:

且瞄准的厚度与半径

无关。

在直球的情况下:

此时,式
将简化为:

进一步化简可得:

即:

如果能够解出

的话,那么将
的值代入到式
中即可求解出

走位技术

台球技术当中十分重要的一项就是通过击打母球的不同位置(即不同的杆法或称为加塞)来控制母球的走位。下面,我先来介绍一下不同的杆法。顺便分享几个我在游戏中模拟的杆法,大家可以体会一下不同的杆法之间的区别。

516ac259c647c6ebb0b4132f6320a687.png
图片30:母球的不同击打位置。

中杆/定杆。不加任何旋转。理想情况下(出杆水平),无摩擦力的情况下,母球不会旋转,只会滑动。

高杆/高塞/跟杆/上旋球。理想情况下(出杆水平),母球向前旋转。击中目标球后有跟进的效果。

1d4200a95a5814a1ef60a1c8cb5ee43c.gif
图片31:高杆示例。

低杆/低塞/缩杆/下旋球。理想情况下(出杆水平),母球向后旋转。击中目标球后有后退的效果。

32bc4a8e029d90bbf7bf0bbebe708530.gif
图片32:低杆示例1。

b20777eb9e14efcd06c748d2594ca03d.gif
图片33:低杆示例2。

边塞。分为
。理想情况下(出杆水平),左旋或者右旋,改变母球碰库后的反射角度。

b9f6741cac3b8b72ff739f3329ddb1f0.gif
图片34:右塞示例。

e757fae1a2ff2e8b83b8c6af2a990627.gif
图片35:左塞示例。

左上塞。理想情况下(出杆水平)。效果是高杆和左塞的叠加。

右上塞。理想情况下(出杆水平)。效果是高杆和右塞的叠加。

左下塞。理想情况下(出杆水平)。效果是低杆和左塞的叠加。

右下塞。理想情况下(出杆水平)。效果是低杆和右塞的叠加。

:
斯登跟进。理想情况下(出杆水平),母球击中目标球之后回跟进一段 距离。这个距离比高杆跟进的距离要短。

:
斯登后退。理想情况下(出杆水平),母球击中目标球之后回后退一段 距离。这个距离比低杆后退的距离要短。

92d263e56d2fe2fc7138d8405d5b5cfa.gif
图片36:斯登后退示例。

:
斯登塞。理想情况下(出杆水平),母球击中目标球之后运动方向改变。

其他:推杆刹车杆扎杆跳杆(斯诺克中不允许跳杆)。

中杆

首先,我们先来研究一下中杆。在忽略所有摩擦力的情况下,当我们在水平地击打母球的中心位置时,母球一开始先滑动,并且会一直保持滑动(因为没有摩擦力)。那么这时候,如果是直球,则对应的就是我们的质量相同的一维弹性碰撞问题。如果不是直球,那么对应的就是我们的质量相同的二维完全弹性碰撞问题(近似)

那么现在我们来考虑摩擦力(仅考虑滑动摩擦力)

2726d6606639ca2fbbae900125999e6e.png
图片37:中杆考虑摩擦力。

在图片37中,我们以击打母球的中心,使其获得一个速率

(质心速率),一开始母球仍然是只有滑动,由于母球相对于台案的速度是向前的,所以母球和台案之间存在滑动摩擦力,其大小为:

这个摩擦力会使母球减速(质心速率)。且质心速率随时间的变化关系式为:


我们直接列写标量方程:

则我们对式
以初始条件
积分可得:

且这个滑动摩擦力会对母球的球心产生一个力矩,其大小为:

则由刚体定轴转动定律可知,母球转动的的角加速度的大小为:

即摩擦力的力矩使得母球的角加速度大小从零开始增加。则母球转动的角速度与时间之间的关系为:


我们直接对式
以初始条件
积分:

当角速率增加到与质心的速率除以半径

一致时母球接下来将做没有滑动的滚动 (Rolling without Slipping),这个过程所需要的时间是:


由Rolling without Slipping 条件:

和式
可得:

解得:

这时候,母球的质心的速率减小到:

母球转动的角速率增加到:

高杆、低杆

现在,我们先来计算一下,击打母球的什么位置可以让它一开始就没有滑动的滚动 (Rolling without Slipping)。

df9265bb4a3d081896a1c929ca6bcf3d.png
图片38

(即不是中杆)的时候。加塞力
时,若要保证母球没有滑动的滚动,则应当击打的位置是:


首先我们在母球球心建立如图片38中所示的平面直角坐标系。设塞力
平行于
轴,且加塞的位置与
轴之间的垂直距离为
。则塞力对母球球心的力矩为:

其中,
垂直于纸面向里(这里注意矢量叉积的右手螺旋定则的使用条件!),即母球在塞力
的作用下顺时针旋转。且有:

母球的角动量的增量为(刚体角动量的变化等于作用在刚体上的外力矩的冲量矩):

母球的动量变化为:

由于是没有滑动的滚动 (Rolling without Slipping),所以,
,我们还有母球(匀质)球的转动惯量为
。则:

解得:

所以,我们应该击打母球球心上方
(即
)处,方可保证母球没有滑动的滚动。

现在,我们来解释一下图片31中的高杆弧线和图片33中的低杆弧线是怎么出现的。

dedd86877a5670db438db40fa25efe58.png
图片39:高杆弧线。

在图片39中,我们给母球加了一个高塞,即

,这个高塞的位置要高于恰使母球发生没有滑动的滚动时所加塞力的位置(即
)。且这个高赛使得母球发生顺时针的旋转(向里看)。此时母球的质心速度
是向前的,而由于顺时针的旋转,母球与台案接触处的速度
是向后的,
  • 此时若
    ,则母球与台案接触处的合速度是向前的,因此母球会受到一个向后的摩擦力。这个摩擦力会帮助母球旋转,但是会削弱母球的质心速率。当母球撞击目标球之后,根据我们的碰撞理论,质心的速率会分出一部分给目标球但质心速度仍是向前的。所以,母球在撞击目标球之后质心的速率会减少。如果这时候,母球的质心速率减小到小于母球与台案接触处的速率,那么此时,母球与台案接触处的合速度就是向后的,则母球会受到一个向前的摩擦力
    ,由于力的方向和加速度的方向是一致的,而且加速度方向指向轨迹凹的一侧,所以,会出现如图片39中所示的那一小段弧线。这段弧线的大小与击打位置和塞力大小都有关。而且这个向前的摩擦力会削弱母球的转动,并且会使得质心的速率增加。直到母球的运动状态变成纯滚动。
  • 此时若
    ,则母球与台案接触处的合速度是向后的,因此母球会受到一个向前的摩擦力。而这个向前的摩擦力会削弱母球的转动,并且会使得质心的速率增加。所以母球的运动状态可能在撞击目标球之前就已经到达了纯滚动。(推杆)

cff65a1b6d5fb2ccf38bddd7e5b0b94a.png
图片40

在图片40中,我们给母球加了一个低塞,即

。这个低赛使得母球发生逆时针的旋转(向里看)。此时母球的质心速度
是向前的,而由于逆时针的旋转,母球与台案接触处的速度
是也是向前的。此时,母球与台案接触处的合速度自然也是向前的。所以母球会受到一个向后的摩擦力,这个摩擦力会同时削弱母球的质心速率和母球的转动,
  • 如果在撞击目标球之前母球的运动状态没有达到纯滚动,那么当母球的撞击目标球之后,它的一部分质心速度会分给目标球,但质心速度仍是向前的,而且母球与台案接触处的速度也是向前的,所以,此时母球与台案接触处的合速度也是向前的,则母球会受到一个向后的摩擦力
    ,由于力的方向和加速度的方向是一致的,而且加速度方向指向轨迹凹的一侧,所以,会出现如图片40中所示的那一小段弧线。而且这个摩擦力会同时削弱母球的质心速率和母球的转动,直到母球的运动状态变成纯滚动。
  • 如果母球的运动状态在撞击目标球之前就已经到达了纯滚动,则说明塞力加的不够或者加低塞的位置太靠上。这就是为什么总是打不出低杆的原因。

左塞/右塞

ba07fe8455c58aee1a3bd7d30521fea8.png
图片41:左塞与右塞与不加塞之间的比较。

如图片41所示,黑棋箭头表示击打母球的中心,这是不加塞的情况,理想情况下,不加塞的母球碰库的反射路径满足反射定律。但是在加塞的时候就不同了。

  • 图片41中的红色箭头表示的是对母球加左塞,此时俯视,母球顺时针旋转。若母球在碰库时仍可以保持旋转,则母球与库接触处的速度方向是向右的,所以,库给母球的摩擦力就是向左的,这个摩擦力会使母球的反射角减小。且刚开始反射的时候应该会出现一小段弧,凹向摩擦力一侧。
  • 图片41中的蓝色箭头表示的是对母球加右塞,此时俯视,母球逆时针旋转。若母球在碰库时仍可以保持旋转,则母球与库接触处的速度方向是向左的,所以,库给母球的摩擦力就是向右的,这个摩擦力会使母球的反射角增加。且刚开始反射的时候应该会出现一小段弧,凹向摩擦力一侧。

最后简单的谈谈发力的问题吧。想要打出漂亮的杆法除了保证出杆直(即保证你能够打到自己瞄的点上)、击球姿势正确之外,发力也是十分重要的。蛮力一点用也没有。为了发力而发力是不可行的,我见过不少人打球的时候后手紧紧的握着杆,这样的做法是完全错误的。紧紧的握着杆不但什么杆法也打不出来,而且还出导致出杆的时候不直。正确的做法是击球之前后手握杆应该是“松”的,即轻轻的握住即可,直到击球的瞬间再突然握紧,这样就能打出不过的效果了。加塞的强弱跟击球时后说握杆的松紧有很大关系。尤其是打低杆的时候,手架要基本放平,身体尽量下压,出杆的时候后手要握紧,同时要很快,还要保证杆头的延伸。

另外,加边塞是一项非常难的技术。因为加边塞会影响瞄球厚薄。对于加边塞的球需要进行大量的练习才可熟练。

Ronnie O'Sullivan 最快147

奥沙利文最快147 - 5分20秒 - 完整版-体育-高清完整正版视频在线观看-优酷(搬运勿投币)_哔哩哔哩 (゜-゜)つロ 干杯~-bilibili


参考

  1. ^维基百科—角速度 https://zh.wikipedia.org/zh-cn/%E8%A7%92%E9%80%9F%E5%BA%A6
  2. ^维基百科—滚动摩擦力 https://en.wikipedia.org/wiki/Rolling_resistance
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值