[笔记]游戏开发中的数学

1.dx,dy

dy/dx就是导数或者说斜率, 变化率

dx,dy中的d其实是 differentiation 的简写,意思是微分算子,表示在任意小的范围内的变化量。

dx是对Δx的近似,Δx=dx+dx的高阶无穷小

Δ这里往往是方便数学思想的描述和宏观解释,这个变化量是肉眼可见的,宏观的。dx则是微积分中的了,表示一点的变化。、

不定积分就是先把fx看成是某个函数的导数,然后给它乘上dx然后fxdx就表示了原函数的纵向增量,也就是fxdx是原函数在x处的微分,然后积分符号S表示对后面整个式子fedx这个微分表达式做求微分的逆运算,得到原函数。
就是说积分是先把导数乘横向变量得到纵向变量即微分,再求微分的原函数。
而不是直接求导数的原函数。
所以积分是微分的逆运算,那个dx是人为加上去的,如果把积分定义为导数的逆运算就不要加那个dx了。

 

2. ∫f(x)dx的解释,以及为什么会有dx

f(x)和dx之间自然是数乘。但需要注意的是dx并不是一个数。

一维dx无所谓,怎么理解都成。但是高维dxdydz理解成乘法就有问题了。

这里的dx,实际上应理解为外微分形式,即它不是一个数,而是一个线性映射。dxdydz实际上应该是外积,常见的性质有dxdx=0, dxdy=-dydx。

dx最重要的功能还是说明对谁求的导

 

dx表示在x方向上的步进量,这个量与x毫无关系,关键是与它对应的第一个积分符号,也就是它的位置,这个位置对应与变量x的步进,dx写成dy,du都没有关系,前面的积分符号类似于累加,就是让变量一边步进,一边乘dx一边累加

 

3.导数

https://baike.baidu.com/item/%E6%B1%82%E5%AF%BC/1063861?fr=aladdin

导数可以表示运动物体的瞬时速度和加速度、可以表示曲线在一点的斜率、还可以表示经济学中的边际和弹性

数学中的名词,即对函数进行求导,用f(x)表示

 

4.o(Δx)

比Δx高阶的无穷小

 

5. 牛顿-莱布尼茨公式

定义

此处原函数我理解为是一个面积

 

6.原函数

https://baike.baidu.com/item/%E5%8E%9F%E5%87%BD%E6%95%B0

一个函数如果有一个原函数,就有许许多多原函数,原函数概念是为解决求导和微分的逆运算而提出来的。

 

例如:已知作直线运动的物体在任一时刻t的速度为v=v(t),要求它的运动规律 ,就是求v=v(t)的原函数

此处的原函数我理解为在有限个无穷小的时间内的速度函数的斜率的积分

 

 

7. 不定积分

根据牛顿-莱布尼茨公式,许多函数的定积分的计算就可以简便地通过求不定积分来进行。这里要注意不定积分与定积分之间的关系:

定积分是一个数,而不定积分是一个表达式,它们仅仅是数学上有一个计算关系。

一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而没有不定积分。连续函数,一定存在定积分和不定积分;若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在;若有跳跃、可去、无穷间断点,则原函数一定不存在,即不定积分一定不存在

 

8. 定积分

 

9.∫f(x)和∫f(x)dx的区别?

1、所属的领域不同。

∫f(x)dx:属于微分。

∫f(x):属于函数。

2、解题的代表方式不同。

∫f(x)dx:带dx的是解析式的微分,求导数之后不带dx是因为zd导数会除掉一个微分。

∫f(x): 是解题的全部解析式

 

两者完全不同:∫f(x)是百错误写法;∫f(x)dx表示对函数f(x)的不定积分。

设F(x)是函数f(x)的一个原函数,我们把函数f(x)的所有原函数F(x)+C(C为任意常数)叫做函度数f(x)的不定积分,记作∫f(问x)dx=F(x)+C。

其中∫叫做积分号,f(x)叫做被积函数,x叫做积分答变量,f(x)dx叫做被积式,C叫做积分常数,求已知函数不定积分的过程叫做对这个函数进行积分。

 

10. ∫s

∫s是指曲线积分
曲线积分:∫ρ(x,y)ds叫对弧长的曲线积分
弧长曲线积分也叫第一类曲线积分

 

 

11. 球坐标系

12.立体角

以观测点为球心,构造一个单位球面;任意物体投影到该单位球面上的投影面积,即为该物体相对于该观测点的立体角。

因此,立体角是单位球面上的一块面积,这和“平面角是单位圆上的一段弧长”类似。

 

13.拉格朗日公式,可用于优化cross为dot

a× (b×c) =b(a·c) -c(a·b)

 

14.点积转叉积 和  转置和逆在一起时的变换

(GN).(MT) = (GN)T * (MT) = (GN)T(MT) =  (NTGT)(MT) = NTGTMT = 0

GTM = I  推出  G=(M-1)T.

 

15.

 

16点积转叉积的矩阵变化

 

17.和矩阵

变换后空间的维度,就是这个矩阵的秩,或者说是独立向量的个数

 

18.行列式 矩阵 线性方程组之间的关系

行列式引入空间的概念,找准向量这个方向,因为它的本质就是n维向量构成的n维图形的体积。

矩阵进一步靠近向量,因为它的本质就是秩,即独立向量的个数。

线性方程组则系统的将二者结合。

 

19.

 

20.齐次坐标

齐次坐标就是将一个原本是n维的向量用一个n+1维向量来表示,是指一个用于投影几何里的坐标系统,如同用于欧氏几何里的笛卡儿坐标一般。

 

21.转置矩阵

 

的推导如下

 

22.逆矩阵

逆矩阵有个很大的作用就是“还原变换”

假设M与N互为逆矩阵,那么M·N·齐次坐标A得到的还是原来的齐次坐标A,那么就意味着还原了这个变换

的推导如下

的推导如下

 

 

 

©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页