1.dx,dy
dy/dx就是导数或者说斜率, 变化率
dx,dy中的d其实是 differentiation 的简写,意思是微分算子,表示在任意小的范围内的变化量。
dx是对Δx的近似,Δx=dx+dx的高阶无穷小
Δ这里往往是方便数学思想的描述和宏观解释,这个变化量是肉眼可见的,宏观的。dx则是微积分中的微了,表示一点的变化。、
不定积分就是先把fx看成是某个函数的导数,然后给它乘上dx然后fxdx就表示了原函数的纵向增量,也就是fxdx是原函数在x处的微分,然后积分符号S表示对后面整个式子fedx这个微分表达式做求微分的逆运算,得到原函数。
就是说积分是先把导数乘横向变量得到纵向变量即微分,再求微分的原函数。
而不是直接求导数的原函数。
所以积分是微分的逆运算,那个dx是人为加上去的,如果把积分定义为导数的逆运算就不要加那个dx了。
2. ∫f(x)dx的解释,以及为什么会有dx
f(x)和dx之间自然是数乘。但需要注意的是dx并不是一个数。
一维dx无所谓,怎么理解都成。但是高维dxdydz理解成乘法就有问题了。
这里的dx,实际上应理解为外微分形式,即它不是一个数,而是一个线性映射。dxdydz实际上应该是外积,常见的性质有dxdx=0, dxdy=-dydx。
dx最重要的功能还是说明对谁求的导
dx表示在x方向上的步进量,这个量与x毫无关系,关键是与它对应的第一个积分符号,也就是它的位置,这个位置对应与变量x的步进,dx写成dy,du都没有关系,前面的积分符号类似于累加,就是让变量一边步进,一边乘dx一边累加
3.导数
https://baike.baidu.com/item/%E6%B1%82%E5%AF%BC/1063861?fr=aladdin
导数可以表示运动物体的瞬时速度和加速度、可以表示曲线在一点的斜率、还可以表示经济学中的边际和弹性
数学中的名词,即对函数进行求导,用f’