转载
今天主要实现了五种常见的非线性滤波算子,
这五种滤波算子对不同的图像都
会有不同的作用,最常用的是中值滤波,因为它的效果最好且信息损失的最少。
1.
极大值滤波
极大值滤波就是选取像素点领域的最大值作为改点的像素值,有效率去了灰度值比较低
的噪声,也可作为形态学里面的膨胀操作。
极大值滤波可以表示为:
Maximum(A)=max[A(x+i,y+j)] (x,y)
属于
M
注:(
x+i,y+j)
是定义在图像上的坐标,
(i,j)
是定义在模板
M
上的坐标。
M
即为运算的模
板。
2.
极小值滤波(与极大值滤波相反)
3.
中点滤波
中点滤波常用于去除图像中的短尾噪声,
例如高斯噪声和均匀分布噪声。
终点滤波器的输
出时给定窗口内灰度的极大值和极小值的平均值;
Midpoint(A)=(max[A(x+i,y+j)]+min[A(x+i,y+j)])/2 (x,y)
属于
M
注:(
x+i,y+j)
是定义在图像上的坐标,
(i,j)
是定义在模板
M
上的坐标。
M
即为运算的模
板。
4.
中值滤波
中值滤波可以消除图像中的长尾噪声,例如负指数噪声和椒盐噪声。在消除噪声时,
中值滤波对图像噪声的模糊极小
(受模板大小的影响)
,
中值滤波实质上是用模板内所包括
像素灰度的中值来取代模板中心像素的灰度。
中值滤波在消除图像内椒盐噪声和保持图像的
空域细节方面,其性能优于均值滤波。
Median(A)=Median[A(x+i,y+j)] (x,y)
属于
M
注:(
x+i,y+j)
是定义在图像上的坐标,
(i,j)
是定义在模板
M
上的坐标。
M
即为运算的模
板。
5.
加权中值滤波(中值滤波的改进)
加权中值滤波是在中值滤波的基础上加以改进,其性能在一定程度上优于中值滤波。
下面是自己在算法上的改进:以例子说明