python辛普森积分_Python龙贝格法求积分实例

我就废话不多说了,直接上代码吧!

# 龙贝格法求积分

import math

a=0 # 积分下限

b=1 # 积分上限

eps=10**-5 # 精度

T=[] # 复化梯形序列

S=[] # Simpson序列

C=[] # Cotes序列

R=[] # Romberg序列

def func(x): # 被积函数

y=math.exp(-x)

return y

def Romberg(a,b,eps,func):

h = b - a

T.append(h * (func(a) + func(b)) / 2)

ep=eps+1

m=0

while(ep>=eps):

m=m+1

t=0

for i in range(2**(m-1)-1):

t=t+func(a+(2*(i+1)-1)*h/2**m)*h/2**m

t=t+T[-1]/2

T.append(t)

if m>=1:

S.append((4**m*T[-1]-T[-2])/(4**m-1))

if m>=2:

C.append((4**m*S[-1]-S[-2])/(4**m-1))

if m>=3:

R.append((4**m*C[-1]-C[-2])/(4**m-1))

if m>4:

ep=abs(10*(R[-1]-R[-2]))

Romberg(a,b,eps,func)

# print(T)

# print(S)

# print(C)

# print(R)

# 计算机参考值0.6321205588

print("积分结果为:{:.5f}".format(R[-1]))

补充拓展:python实现数值分析之龙贝格求积公式

复合梯形公式的提出:

1.首先,什么是梯形公式:

梯形公式表明:f(x)在[a,b]两点之间的积分(面积),近似地可以用一个梯形的面积表示。

2.显然,这个梯形公式对于不同的f(x)而言,其代数精度不同。为了能适合更多的f(x),我们一般使用牛顿-科特斯公式其中比较高次的公式来进行数值求积。但高次的缺陷是当次数大于8次,求积公式就会不稳定。因此,我们用于数值积分的牛顿-科特斯公式通常是一次的梯形公式、二次的辛普森公式和4此的科特斯公式。

辛普森公式:

科特斯公式:

3.牛顿-科特斯公式次数高于8次不能用,但是低次公式又精度不够。解决办法就是使用:复合梯形求积公式。复合求积公式就是在区间[a,b]上划分n格小区间。一个大区间[a,b]上用一次梯形公式精度不够,那么在n个小区间都使用梯形公式,最后将小区间的和累加起来,就可以得到整个大区间[a,b]的积分近似值。

a = x0 < x1

令Tn为将[a,b]划分n等分的复合梯形求积公式,h =(b-a)/n为小区间的长度。h/2类似于梯形公式中的(b-a)/2

注意:这里的k+1是下标

通过研究我们发现:T2n与Tn之间存在一些递推关系。

注意:这里的k+1/2是下标。并且其中的h/2是中的h是Tn(n等分中的h = (b-a)/n))

于是乎,我们可以一次推出T1,T2,T4,T8…T2n序列

引出这些之后,才是我们的主题:龙贝格求积公式

龙贝格求积公式的实质是用T2n序列构造,S2n序列,

再用S2n序列构造C2n序列

最后用C2n序列构造R2n序列。

编程实现,理解下面的几个公式即可。

python编程代码如下:

# coding=UTF-8

# Author:winyn

'''

给定一个函数,如:f(x)= x^(3/2),和积分上下限a,b,用机械求积Romberg公式求积分。

'''

import numpy as np

def func(x):

return x**(3/2)

class Romberg:

def __init__(self, integ_dowlimit, integ_uplimit):

'''

初始化积分上限integ_uplimit和积分下限integ_dowlimit

输入一个函数,输出函数在积分上下限的积分

'''

self.integ_uplimit = integ_uplimit

self.integ_dowlimit = integ_dowlimit

def calc(self):

'''

计算Richardson外推算法的四个序列

'''

t_seq1 = np.zeros(5, 'f')

s_seq2 = np.zeros(4, 'f')

c_seq3 = np.zeros(3, 'f')

r_seq4 = np.zeros(2, 'f')

# 循环生成hm间距序列

hm = [(self.integ_uplimit - self.integ_dowlimit) / (2 ** i) for i in range(0,5)]

print(hm)

# 循环生成t_seq1

fa = func(self.integ_dowlimit)

fb = func(self.integ_uplimit)

t0 = (1 / 2) * (self.integ_uplimit - self.integ_dowlimit) * (fa+fb)

t_seq1[0] = t0

for i in range(1, 5):

sum = 0

# 多出来的点的累加和

for each in range(1, 2**i,2):

sum =sum + hm[i]*func( self.integ_dowlimit+each * hm[i])#计算两项值

temp1 = 1 / 2 * t_seq1[i - 1]

temp2 =sum

temp = temp1 + temp2

# 求t_seql的1-4位

t_seq1[i] = temp

print('T序列:'+ str(list(t_seq1)))

# 循环生成s_seq2

s_seq2 = [round((4 * t_seq1[i + 1] - t_seq1[i]) / 3,6) for i in range(0, 4)]

print('S序列:' + str(list(s_seq2)))

# 循环生成c_seq3

c_seq3 = [round((4 ** 2 * s_seq2[i + 1] - s_seq2[i]) / (4 ** 2 - 1),6) for i in range(0, 3)]

print('C序列:' + str(list(c_seq3)))

# 循环生成r_seq4

r_seq4 = [round((4 ** 3 * c_seq3[i + 1] - c_seq3[i]) / (4 ** 3 - 1),6) for i in range(0, 2)]

print('R序列:' + str(list(r_seq4)))

return 'end'

rom = Romberg(0, 1)

print(rom.calc())

以上这篇Python龙贝格法求积分实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值