文章目录
数值微分与数值积分
数值微分
根据函数在一些离散点上的函数值,求该函数导数的近似值称为数值微分。
利用插值多项式构造数值微分公式
插值函数法:设 P n ( x ) P_n(x) Pn(x) 是 f ( x ) f(x) f(x) 的 n n n 次插值多项式,在插值区间 [ a , b ] [a,b] [a,b] 内,一种直观的数值微分公式是:
f ( k ) ( x ) ≈ P n ( k ) ( x ) , 1 ≤ k ≤ n , a ≤ x ≤ b f^{(k)}(x)\approx P_n^{(k)}(x),1\leq k\leq n,a\leq x\leq b f(k)(x)≈Pn(k)(x),1≤k≤n,a≤x≤b
称为插值型求导公式。
误差分析:
R n ( x ) = f ( x ) − P n ( x ) = f ( n + 1 ) ( ξ ) ( n + 1 ) ! ( x − x 0 ) ( x − x 1 ) ⋯ ( x − x n ) f ′ ( x ) − P n ′ ( x ) = f ( n + 1 ) ( ξ ) ( n + 1 ) ! ω n + 1 ′ ( x ) + ω n + 1 ( x ) ( n + 1 ) ! d d x f ( n + 1 ) ( ξ ) , 其 中 , ω n + 1 ( x ) = ( x − x 0 ) ( x − x 1 ) ⋯ ( x − x n ) x = x k 时 , f ′ ( x k ) − P n ′ ( x k ) = f ( n + 1 ) ( ξ ) ( n + 1 ) ! ω n + 1 ′ ( x k ) f ′ ′ ( x ) − P n ′ ′ ( x ) = f ( n + 1 ) ( ξ ) ( n + 1 ) ! ω n + 1 ′ ′ ( x ) + 2 ω n + 1 ′ ( x ) ( n + 1 ) ! d d x f ( n + 1 ) ( ξ ) + ω n + 1 ( x ) ( n + 1 ) ! d 2 d x 2 f ( n + 1 ) ( ξ ) x = x k 时 , f ′ ′ ( x k ) − P n ′ ′ ( x k ) = f ( n + 1 ) ( ξ ) ( n + 1 ) ! ω n + 1 ′ ′ ( x k ) + 2 ω n + 1 ′ ( x k ) ( n + 1 ) ! d d x f ( n + 1 ) ( ξ ) R_n(x)=f(x)-P_n(x)=\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)(x-x_1)\cdots(x-x_n)\\f'(x)-P'_n(x)=\frac{f^{(n+1)}(\xi)}{(n+1)!}\omega'_{n+1}(x)+\frac{\omega_{n+1}(x)}{(n+1)!}\frac{d}{dx}f^{(n+1)}(\xi),其中,\omega_{n+1}(x)=(x-x_0)(x-x_1)\cdots(x-x_n)\\x=x_k时,f'(x_k)-P'_n(x_k)=\frac{f^{(n+1)}(\xi)}{(n+1)!}\omega'_{n+1}(x_k)\\f''(x)-P_n''(x)=\frac{f^{(n+1)}(\xi)}{(n+1)!}\omega''_{n+1}(x)+2\frac{\omega'_{n+1}(x)}{(n+1)!}\frac{d}{dx}f^{(n+1)}(\xi)+\frac{\omega_{n+1}(x)}{(n+1)!}\frac{d^2}{dx^2}f^{(n+1)}(\xi)\\x=x_k时,f''(x_k)-P''_n(x_k)=\frac{f^{(n+1)}(\xi)}{(n+1)!}\omega''_{n+1}(x_k)+2\frac{\omega'_{n+1}(x_k)}{(n+1)!}\frac{d}{dx}f^{(n+1)}(\xi) Rn(x)=f(x)−Pn(x)=(n+1)!f(n+1)(ξ)(x−x0)(x−x1)⋯(x−xn)f′(x)−Pn′(x)=(n+1)!f(n+1)(ξ)ωn+1′(x)+(n+1)!ωn+1(x)dxdf(n+1)(ξ),其中,ωn+1(x)=(x−x0)(x−x1)⋯(x−xn)x=xk时,f′(xk)−Pn′(xk)=(n+1)!f(n+1)(ξ)ωn+1′(xk)f′′(x)−Pn′′(x)=(n+1)!f(n+1)(ξ)ωn+1′′(x)+2(n+1)!ωn+1′(x)dxdf(n+1)(ξ)+(n+1)!ωn+1(x)dx2d2f(n+1)(ξ)x=xk时,f′′(xk)−Pn′′(xk)=(n+1)!f(n+1)(ξ)ωn+1′′(xk)+2(n+1)!ωn+1′(xk)dxdf(n+1)(ξ)
等距结点处的数值微分公式
-
两点公式:设 x 0 < x 1 x_0<x_1 x0<x1,则
P 1 ( x ) = f ( x 0 ) x − x 1 x 0 − x 1 + f ( x 1 ) x − x 0 x 1 − x 0 f ′ ( x ) ≈ P 1 ′ ( x ) = f ( x 1 ) − f ( x 0 ) h , h = x 1 − x 0 , x 0 ≤ x ≤ x 1 f ′ ( x 0 ) ≈ f ( x 1 ) − f ( x 0 ) h f ′ ( x 1 ) ≈ f ( x 1 ) − f ( x 0 ) h ω 2 ( x ) = ( x − x 0 ) ( x − x 1 ) f ′ ( x 0 ) − P 1 ′ ( x 0 ) = f ′ ′ ( ξ 0 ) 2 ω 2 ′ ( x 0 ) = f ′ ′ ( ξ 0 ) 2 ( x 0 − x 1 ) = − h 2 f ′ ′ ( ξ 0 ) f ′ ( x 1 ) − P 1 ′ ( x 1 ) = f ′ ′ ( ξ 1 ) 2 ω 2 ′ ( x 1 ) = f ′ ′ ( ξ 1 ) 2 ( x 1 − x 0 ) = h 2 f ′ ′ ( ξ 1 ) , x 0 < ξ 0 , ξ 1 < x 1 P_1(x)=f(x_0)\frac{x-x_1}{x_0-x_1}+f(x_1)\frac{x-x_0}{x_1-x_0}\\f'(x)\approx P_1'(x)=\frac{f(x_1)-f(x_0)}{h},h=x_1-x_0,x_0\leq x\leq x_1\\f'(x_0)\approx \frac{f(x_1)-f(x_0)}{h}\\f'(x_1)\approx \frac{f(x_1)-f(x_0)}{h}\\\omega_2(x)=(x-x_0)(x-x_1)\\f'(x_0)-P_1'(x_0)=\frac{f''(\xi_0)}{2}\omega_2'(x_0)=\frac{f''(\xi_0)}{2}(x_0-x_1)=-\frac{h}{2}f''(\xi_0)\\f'(x_1)-P_1'(x_1)=\frac{f''(\xi_1)}{2}\omega_2'(x_1)=\frac{f''(\xi_1)}{2}(x_1-x_0)=\frac{h}{2}f''(\xi_1),x_0<\xi_0,\xi_1<x_1 P1(x)=f(x0)x0−x1x−x1+f(x1)x1−x0x−x0f′(x)≈P1′(x)=hf(x1)−f(x0),h=x1−x0,x0≤x≤x1f′(x0)≈hf(x1)−f(x0)f′(x1)≈hf(x1)−f(x0)ω2(x)=(x−x0)(x−x1)f′(x0)−P1′(x0)=2f′′(ξ0)ω2′(x0)=2f′′(ξ0)(x0−x1)=−2hf′′(ξ0)f′(x1)−P1′(x1)=2f′′(ξ1)ω2′(x1)=2f′′(ξ1)(x1−x0)=2hf′′(ξ1),x0<ξ0,ξ1<x1 -
三点公式:设 x 0 < x 1 < x 2 , x 1 = x 0 + h , x 2 = x 0 + 2 h x_0<x_1<x_2,x_1=x_0+h,x_2=x_0+2h x0<x1<x2,x1=x0+h,x2=x0+2h,则
P 2 ( x ) = ( x − x 1 ) ( x − x 2 ) ( x 0 − x 1 ) ( x 0 − x 2 ) f ( x 0 ) + ( x − x 0 ) ( x − x 2 ) ( x 1 − x 0 ) ( x 1 − x 2 ) f ( x 1 ) + ( x − x 0 ) ( x − x 1 ) ( x 2 − x 0 ) ( x 2 − x 1 ) f ( x 2 ) f ′ ( x ) ≈ P 2 ′ ( x ) = 2 x − x 1 − x 2 2 h 2 f ( x 0 ) − 2 x − x 0 − x 2 h 2 f ( x 1 ) + 2 x − x 0 − x 1 2 h 2 f ( x 2 ) f ′ ( x 0 ) ≈ − 3 f ( x 0 ) + 4 f ( x 1 ) − f ( x 2 ) 2 h f ′ ( x 1 ) ≈ − f ( x 0 ) + f ( x 2 ) 2 h f ′ ( x 2 ) = f ( x 0 ) − 4 f ( x 1 ) + 3 f ( x 2 ) 2 h ω 3 ( x ) = ( x − x 0 ) ( x − x 1 ) ( x − x 2 ) , ω 3 ′ ( x ) = ( 2 x − x 0 − x 1 ) ( x − x 2 ) + ( x − x 0 ) ( x − x 1 ) f ′ ( x 0 ) − P 2 ′ ( x 0 ) = f ′ ′ ′ ( ξ 0 ) 6 ω 3 ′ ( x 0 ) = f ′ ′ ′ ( ξ 0 ) 6 2 h 2 = h 2 3 f ′ ′ ′ ( ξ 0 ) f ′ ( x 1 ) − P 2 ′ ( x 1 ) = f ′ ′ ′ ( ξ 1 ) 6 ω 3 ′ ( x 1 ) = − h 2 6 f ′ ′ ′ ( ξ 1 ) f ′ ( x 2 ) − P 2 ′ ( x 2 ) = f ′ ′ ′ ( ξ 2 ) 6 ω 3 ′ ( x 2 ) = f ′ ′ ′ ( ξ 0 ) 6 2 h 2 = h 2 3 f ′ ′ ′ ( ξ 2 ) , x 0 ≤ ξ 0 , ξ 1 , ξ 2 ≤ x 2 P_2(x)=\frac{(x-x_1)(x-x_2)}{(x_0-x_1)(x_0-x_2)}f(x_0)+\frac{(x-x_0)(x-x_2)}{(x_1-x_0)(x_1-x_2)}f(x_1)+\frac{(x-x_0)(x-x_1)}{(x_2-x_0)(x_2-x_1)}f(x_2)\\f'(x)\approx P_2'(x)=\frac{2x-x_1-x_2}{2h^2}f(x_0)-\frac{2x-x_0-x_2}{h^2}f(x_1)+\frac{2x-x_0-x_1}{2h^2}f(x_2)\\f'(x_0)\approx\frac{-3f(x_0)+4f(x_1)-f(x_2)}{2h}\\f'(x_1)\approx\frac{-f(x_0)+f(x_2)}{2h}\\f'(x_2)=\frac{f(x_0)-4f(x_1)+3f(x_2)}{2h}\\\omega_3(x)=(x-x_0)(x-x_1)(x-x_2),\omega_3'(x)=(2x-x_0-x_1)(x-x_2)+(x-x_0)(x-x_1)\\f'(x_0)-P_2'(x_0)=\frac{f'''(\xi_0)}{6}\omega_3'(x_0)=\frac{f'''(\xi_0)}{6}2h^2=\frac{h^2}{3}f'''(\xi_0)\\f'(x_1)-P_2'(x_1)=\frac{f'''(\xi_1)}{6}\omega_3'(x_1)=-\frac{h^2}{6}f'''(\xi_1)\\f'(x_2)-P_2'(x_2)=\frac{f'''(\xi_2)}{6}\omega_3'(x_2)=\frac{f'''(\xi_0)}{6}2h^2=\frac{h^2}{3}f'''(\xi_2),x_0\leq \xi_0,\xi_1,\xi_2\leq x_2 P2(x)=(x0−x1)(x0−x2)(x−x1)(x−x2)f(x0)+(x1−x0)(x1−x2)(x−x0)(x−x2)f(x1)+(x2−x0)(x2−x1)(x−x0)(x−x1)f(x2)f′(x)≈P2′(x)=2h22x−x1−x2f(x0)−h22x−x0−x2f(x1)+2h22x−x0−x1f(x2)f′(x0)≈2h−3f(x0)+4f(x1)−f(x2)f′(x1)≈2h−f(x0)+f(x2)f′(x2)=2hf(x0)−4f(x1)+3f(x2)ω3(x)=(x−x0)(x−x1)(x−x2),ω3′(x)=(2x−x0−x1)(x−x2)+(x−x0)(x−x1)f′(x0)−P2′(x0)=6f′′′(ξ0)ω3′(x0)=6f′′′(ξ0)2h2=3h2f′′′(ξ0)f′(x1)−P2′(x1)=6f′′′(ξ1)ω3′(x1)=−6h2f′′′(ξ1)f′(x2)−P2′(x2)=6f′′′(ξ2)ω3′(x2)=6f′′′(ξ0)2h2=3h2f′′′(ξ2),x0≤ξ0,ξ1,ξ2≤x2
二阶数值微分公式:
f ′ ′ ( x i ) ≈ P 2 ′ ′ ( x i ) = d d x [ 2 x − x 1 − x 2 2 h 2 f ( x 0 ) − 2 x − x 0 − x 2 h 2 f ( x 1 ) + 2 x − x 0 − x 1 2 h 2 f ( x 2 ) ] ∣ x = x i = f ( x 0 ) − 2 f ( x 1 ) + f ( x 2 ) h 2 , i = 0 , 1 , 2 w 3 ′ ′ ( x ) = 2 ( 3 x − x 0 − x 1 − x 2 ) f ′ ′ ( x 0 ) − P 2 ′ ′ ( x 0 ) = f ′ ′ ′ ( ξ 0 ) 6 ω 3 ′ ′ ( x 0 ) + 2 ω 3 ′ ( x 0 ) 6 d d x f ′ ′ ′ ( ξ 1 ) = − h f ′ ′ ′ ( ξ 0 ) + h 2 6 f ( 4 ) ( ξ 1 ) f ′ ′ ( x 1 ) − P 2 ′ ′ ( x 1 ) = f ′ ′ ′ ( ξ 2 ) 6 ω 3 ′ ′ ( x 1 ) + 2 ω 3 ′ ( x 1 ) 6 d d x f ′ ′ ′ ( ξ 3 ) = − 1 12 f ( 4 ) ( ξ 3 ) f ′ ′ ( x 2 ) − P 2 ′ ′ ( x 2 ) = f ′ ′ ′ ( ξ 4 ) 6 ω 3 ′ ′ ( x 2 ) + 2 ω 3 ′ ( x 2 ) 6 d d x f ′ ′ ′ ( ξ 5 ) = h f ′ ′ ′ ( ξ 4 ) − h 2 6 f ( 4 ) ( ξ 5 ) f''(x_i)\approx P_2''(x_i)=\frac{d}{dx}[\frac{2x-x_1-x_2}{2h^2}f(x_0)-\frac{2x-x_0-x_2}{h^2}f(x_1)+\frac{2x-x_0-x_1}{2h^2}f(x_2)]|_{x=x_i}\\=\frac{f(x_0)-2f(x_1)+f(x_2)}{h^2},i=0,1,2\\w_3''(x)=2(3x-x_0-x_1-x_2)\\f''(x_0)-P_2''(x_0)=\frac{f'''(\xi_0)}{6}\omega''_{3}(x_0)+2\frac{\omega'_{3}(x_0)}{6}\frac{d}{dx}f'''(\xi_1)=-hf'''(\xi_0)+\frac{h^2}{6}f^{(4)}(\xi_1)\\f''(x_1)-P_2''(x_1)=\frac{f'''(\xi_2)}{6}\omega''_{3}(x_1)+2\frac{\omega'_{3}(x_1)}{6}\frac{d}{dx}f'''(\xi_3)=-\frac{1}{12}f^{(4)}(\xi_3)\\f''(x_2)-P_2''(x_2)=\frac{f'''(\xi_4)}{6}\omega''_{3}(x_2)+2\frac{\omega'_{3}(x_2)}{6}\frac{d}{dx}f'''(\xi_5)=hf'''(\xi_4)-\frac{h^2}{6}f^{(4)}(\xi_5) f′′(xi)≈P2′′(xi)=dxd[2h22x−x1−x2f(x0)−h22x−x0−x2f(x1)+2h22x−x0−x1f(x2)]∣x=xi=h2f(x0)−2f(x1)+f(x2),i=0,1,2w3′′(x)=2(3x−x0−x1−x2)f′′(x