python 密度聚类 使用_使用python+sklearn实现在小型数据集(toy datasets)上比较不同聚类算法...

注意:单击此处https://urlify.cn/Rzme22下载完整的示例代码,或通过Binder在浏览器中运行此示例 此示例显示了在二维模式下的数据集上不同聚类算法的特征。除最后一个数据集外,每个数据集-算法对的参数均已调整好,以产生比较好的聚类结果。有一些算法比其他算法对参数值更敏感。 最后一个数据集是聚类为“null”的一个示例:数据是同质(homogeneous)的,并且没有好的聚类结果。对于此示例,空(null)数据集使用与其上面一行中的数据集相同的参数,这表示参数值和数据结构不匹配。 尽管这些示例给出了有关算法的一些信息,但这种信息可能不适用于非常高维的数据。
e8fed8be62b20ba410ca860d41f5d042.png
sphx_glr_plot_cluster_comparison_001
print(__doc__)import timeimport warningsimport numpy as npimport matplotlib.pyplot as pltfrom sklearn import cluster, datasets, mixturefrom sklearn.neighbors import kneighbors_graphfrom sklearn.preprocessing import StandardScalerfrom itertools import cycle, islicenp.random.seed(0)# ============# 生成数据集。我们选择大小足够大的数据集,以查看算法的可扩展性,# 但不能选择太大,以避免运行时间太长# ============n_samples = 1500noisy_circles = datasets.make_circles(n_samples=n_samples, factor=.5,                                      noise=.05)noisy_moons = datasets.make_moons(n_samples=n_samples, noise=.05)blobs = datasets.make_blobs(n_samples=n_samples, random_state=8)no_structure = np.random.rand(n_samples, 2), None# 各向异性(Anisotropicly)分布的数据random_state = 170X, y = datasets.make_blobs(n_samples=n_samples, random_state=random_state)transformation = [[0.6, -0.6], [-0.4, 0.8]]X_aniso = np.dot(X, transformation)aniso = (X_aniso, y)# 具有变化的斑点(blobs)varied = datasets.make_blobs(n_samples=n_samples,                             cluster_std=[1.0, 2.5, 0.5],                             random_state=random_state)# ============# 设置聚类参数# ============plt.figure(figsize=(9 * 2 + 3, 12.5))plt.subplots_adjust(left=.02, right=.98, bottom=.001, top=.96, wspace=.05,                    hspace=.01)plot_num = 1default_base = {'quantile': .3,                'eps': .3,                'damping': .9,                'preference': -200,                'n_neighbors': 10,                'n_clusters': 3,                'min_samples': 20,                'xi': 0.05,                'min_cluster_size': 0.1}datasets = [    (noisy_circles, {'damping': .77, 'preference': -240,                     'quantile': .2, 'n_clusters': 2,                     'min_samples': 20, 'xi': 0.25}),    (noisy_moons, {'damping': .75, 'preference': -220, 'n_clusters': 2}),    (varied, {'eps': .18, 'n_neighbors': 2,              'min_samples': 5, 'xi': 0.035, 'min_cluster_size': .2}),    (aniso, {'eps': .15, 'n_neighbors': 2,             'min_samples': 20, 'xi': 0.1, 'min_cluster_size': .2}),    (blobs, {}),    (no_structure, {})]for i_dataset, (dataset, algo_params) in enumerate(datasets):    # 使用数据集特定的值更新参数    params = default_base.copy()    params.update(algo_params)    X, y = dataset    # 标准化数据集,以便更轻松地选择参数    X = StandardScaler().fit_transform(X)    # 估计mean shift的带宽(estimate bandwidth for mean shift)    bandwidth = cluster.estimate_bandwidth(X, quantile=params['quantile'])    # 结构化ward的连通性矩阵    connectivity = kneighbors_graph(        X, n_neighbors=params['n_neighbors'], include_self=False)    # 使连通性对称    connectivity = 0.5 * (connectivity + connectivity.T)    # ============    # 创建聚类对象    # ============    ms = cluster.MeanShift(bandwidth=bandwidth, bin_seeding=True)    two_means = cluster.MiniBatchKMeans(n_clusters=params['n_clusters'])    ward = cluster.AgglomerativeClustering(        n_clusters=params['n_clusters'], linkage='ward',        connectivity=connectivity)    spectral = cluster.SpectralClustering(        n_clusters=params['n_clusters'], eigen_solver='arpack',        affinity="nearest_neighbors")    dbscan = cluster.DBSCAN(eps=params['eps'])    optics = cluster.OPTICS(min_samples=params['min_samples'],                            xi=params['xi'],                            min_cluster_size=params['min_cluster_size'])    affinity_propagation = cluster.AffinityPropagation(        damping=params['damping'], preference=params['preference'])    average_linkage = cluster.AgglomerativeClustering(        linkage="average", affinity="cityblock",        n_clusters=params['n_clusters'], connectivity=connectivity)    birch = cluster.Birch(n_clusters=params['n_clusters'])    gmm = mixture.GaussianMixture(        n_components=params['n_clusters'], covariance_type='full')    clustering_algorithms = (        ('MiniBatchKMeans', two_means),        ('AffinityPropagation', affinity_propagation),        ('MeanShift', ms),        ('SpectralClustering', spectral),        ('Ward', ward),        ('AgglomerativeClustering', average_linkage),        ('DBSCAN', dbscan),        ('OPTICS', optics),        ('Birch', birch),        ('GaussianMixture', gmm)    )    for name, algorithm in clustering_algorithms:        t0 = time.time()        # 捕获与kneighbors_graph有关的警告信息        with warnings.catch_warnings():            warnings.filterwarnings(                "ignore",                message="the number of connected components of the " +                "connectivity matrix is [0-9]{1,2}" +                " > 1. Completing it to avoid stopping the tree early.",                category=UserWarning)            warnings.filterwarnings(                "ignore",                message="Graph is not fully connected, spectral embedding" +                " may not work as expected.",                category=UserWarning)            algorithm.fit(X)        t1 = time.time()        if hasattr(algorithm, 'labels_'):            y_pred = algorithm.labels_.astype(np.int)        else:            y_pred = algorithm.predict(X)        plt.subplot(len(datasets), len(clustering_algorithms), plot_num)        if i_dataset == 0:            plt.title(name, size=18)        colors = np.array(list(islice(cycle(['#377eb8', '#ff7f00', '#4daf4a',                                             '#f781bf', '#a65628', '#984ea3',                                             '#999999', '#e41a1c', '#dede00']),                                      int(max(y_pred) + 1))))        # 为异常值(如果有)设置为黑色        colors = np.append(colors, ["#000000"])        plt.scatter(X[:, 0], X[:, 1], s=10, color=colors[y_pred])        plt.xlim(-2.5, 2.5)        plt.ylim(-2.5, 2.5)        plt.xticks(())        plt.yticks(())        plt.text(.99, .01, ('%.2fs' % (t1 - t0)).lstrip('0'),                 transform=plt.gca().transAxes, size=15,                 horizontalalignment='right')        plot_num += 1plt.show()
脚本的总运行时间:(0分钟32.328秒) 估计的内存使用量: 75 MB ddbe6bdc469ca3d40ff31c57dcbfb698.png 下载Python源代码: plot_cluster_comparison.py 下载Jupyter notebook源代码: plot_cluster_comparison.ipynb 由Sphinx-Gallery生成的画廊

文壹由“伴编辑器”提供技术支持

☆☆☆为方便大家查阅,小编已将scikit-learn学习路线专栏 文章统一整理到公众号底部菜单栏,同步更新中,关注公众号,点击左下方“系列文章”,如图:

a558a7071441f1331b6e75b7090ac433.png

欢迎大家和我一起沿着scikit-learn文档这条路线,一起巩固机器学习算法基础。(添加微信:mthler备注:sklearn学习,一起进【sklearn机器学习进步群】开启打怪升级的学习之旅。)

69b7292d6c7480a0a87ccf74689e8f73.png

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
好的,下面是使用KMeans聚类、DBSCAN算法对模拟数据进行聚类的示例代码: ```python # 导入必要的库 from sklearn.datasets import make_classification from sklearn.cluster import KMeans, DBSCAN import matplotlib.pyplot as plt # 生成模拟数据 X, y = make_classification(n_samples=1000, n_features=2, n_informative=2, n_redundant=0, n_clusters_per_class=1, class_sep=0.5, random_state=42) # 使用KMeans聚类 kmeans = KMeans(n_clusters=3, random_state=42) kmeans_labels = kmeans.fit_predict(X) # 使用DBSCAN算法聚类 dbscan = DBSCAN(eps=0.3, min_samples=5) dbscan_labels = dbscan.fit_predict(X) # 绘制聚类结果图像 plt.figure(figsize=(12, 5)) # 绘制KMeans聚类结果 plt.subplot(1, 2, 1) plt.scatter(X[:, 0], X[:, 1], c=kmeans_labels, cmap='rainbow') plt.title('KMeans Clustering') plt.xlabel('Feature 1') plt.ylabel('Feature 2') plt.colorbar() # 绘制DBSCAN聚类结果 plt.subplot(1, 2, 2) plt.scatter(X[:, 0], X[:, 1], c=dbscan_labels, cmap='rainbow') plt.title('DBSCAN Clustering') plt.xlabel('Feature 1') plt.ylabel('Feature 2') plt.colorbar() plt.show() ``` 在上述代码中,我们使用`make_classification`函数生成了一个包含两个特征、三个簇的模拟数据集。接着,我们分别使用KMeans聚类、DBSCAN算法对数据集进行聚类,并将聚类结果绘制成图像。 在图像中,我们可以看到KMeans聚类和DBSCAN算法聚类的结果。其中,KMeans聚类数据集分成了三个簇,而DBSCAN算法则将数据集中的一些异常点(如图中的蓝色点)作为噪声进行了处理。不同的簇用不同的颜色表示,可以清晰地看出聚类的效果。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值