Sklearn(二): sklearn.cluster 各种聚类方法解析

Classes1

各种聚类方法特性汇总:

sklearn.cluster.KMeans

from sklearn.cluster import KMeans
KMeans(n_clusters=8,init='k-means++',n_init=10,max_iter=300,tol=0.0001,precompute_distances='auto',verbose=0,random_state=None,copy_x=True,n_jobs=1,algorithm='auto')
#n_clusters:class的个数;
#max_inter:每一个初始化值下,最大的iteration次数;
#n_init:尝试用n_init个初始化值进行拟合;
#tol:within-cluster sum of square to declare convergence;
#init=‘k-means++’:可使初始化的centroids相互远离;

算法要点:
1、将training data (X)分为k clusters;
2、object function:

3、缺陷:
1)KMeans假设clusters是convex or isotropics;他不能很好的拟合elongated clusters or manifolds with irregular shape;
2)欧几里得距离会随着特征数量的增加(dimension),而变得越来越膨胀;从而影响模型收敛。针对这一问题,一个好的解决方法是:可以利用PCA等降维工具先将data的特征数目降低在可接受的范围内,然后在计算其欧几里得距离;
3)initial centroids选择不慎,可能会使模型convergence to local minimum;利用KMeans的参数init=‘k-means++’,可以使initial centroids相互远离,从而使模型收敛到一个更好的结果。

sklearn.cluster.MiniBatchKMeans

from sklearn.cluster import MiniBatchKMeans(n_clusters=8,init='k-means++',max_iter=100,batch-size=100,verbose=0,compute_labels=True,random_state=None,tol=0.0,max_no_improvement=10,init_size=None,n_init=3,reassignment_ration=0.01)
#n_clusters: class数量;
#batch_size:用来拟合KMeans的subset size;
#compute_labels=True:将在batch_size上的拟合结果应用到整个data;
#tol:目标函数变化值<tol时,停止迭代;
#max_no_improvement:当max_no_improvement个batchset停止迭代时,给出最终的模型拟合结果;

算法要点:
相比标准的KMeans算法,MiniBatchKMeans是在subset进行模型拟合;其拟合效果比标准的KMeans算法略差(差别较小);但是MiniBatchKMeans的收敛速度要快于KMeans;

sklearn.cluster.AffinityPropagation

from sklearn.cluster import AffinityPropagation
AffinityPropagation(damping=0.5,max_iter=200,convergence_iter=15,copy=True,preference=None,affinity='euclidean',verbose=False)
#damping:减振因子,用来避免在iteration中r,a的来回震荡;
#preference???
#convergence_iter:在estimated cluster数量不变后,还要进行的iteration次数;
#affinity:用来估计样本之间亲密度的函数:{precomputed,euclidean}{事先定义,欧几里得}

算法要点:
1)工作原理:

  1. AffinityPropagation不需要在运行算法前确定聚类的个数;AffinityPropagation的要旨是选择exampler(data中实际存在的点),用来代表data(exampler的初始化主要是通过preference设定的);
  2. 在算法中,exampler的选择主要是通过两个函数进行的:responsibility r(i,k):the responsiblity of sample k to be the exampler of sample i,availability a(i,k):the availability of sample k to be the exampler of sample i;
  3. 在算法开始时,将r(i,k)和a(i,k)均设为0,iteration,直到r,a都达到收敛;为了减小r,a在iteration中的震荡,可以引入减振因子(可用damping参数实现);
    2)缺陷:算法时间复杂度和空间复杂度均很高;
    3)相关公式:

    4)参考博文

sklearn.cluster.MeanShift

from sklearn.cluster import MeanShift
MeanShift(bandwidth=None,seeds=None,bin_seeding=False,min_bin_freq=1,cluster_all=True,n_jobs=1)

算法要点:
1)缺陷:由于算法运行过程中需要多次计算最近邻points,因此,该算法的可扩展性不高;estimate_bandwidth function,相比MeanShift算法具有更低的可扩展性,因此,如果在MeanShift算法中引入estimate_bandwidth,将进一步限值MeanShift的使用;
2)参考博文:
MeanShift聚类算法
MeanShift算法介绍

sklearn.cluster.SpectralClustering

from sklearn.cluster import SpectralClustering(n_clusters=8,eigen_solver=None,random_state=None,n_init=10,gamma=1.0,affinity='rbf',n_neighbors=10,eigen_tol=0.0,assign_labels='kmeans',degree=3,coef0=1,kernel_params=None,n_jobs=1)
#n_clusters:聚类的个数;
#eigen_solver:使用的特征值分解策略;
#gamma:计算相似矩阵时,如果使用核函数,该核函数的系数;
#affinity:计算相似度时使用的距离公式;
#n_neighbors:利用k近邻方法构建邻接矩阵时,所使用的k近邻;
#eigen_tol:Stopping criterion for eigendecomposition of the Laplacian matrix when using arpack eigen_solver.
#assign_labels:通过求解“拉普拉斯矩阵特征值”,获得指示向量矩阵(类似于降维后的特征),在指示向量矩阵的基础上,对矩阵各行,运用assign_labels进行聚类;取值:{kmeans,discretize};
#degree:Degree of the polynomial kernel. Ignored by other kernels;
#coef0:Zero coefficient for polynomial and sigmoid kernels. Ignored by other kernels.
#kernel_params:Parameters (keyword arguments) and values for kernel passed as callable object. Ignored by other kernels.
#n_jobs:The number of parallel jobs to run. If -1, then the number of jobs is set to the number of CPU cores.

算法要点:
1)优点:

  1. 谱聚类只需要数据之间的相似度矩阵,因此对于处理稀疏数据的聚类很有效。这点传统聚类算法比如K-Means很难做到;
  2. 由于使用了降维,因此在处理高维数据聚类时的复杂度比传统聚类算法好。
    2)缺点:
  3. 如果最终聚类的维度非常高,则由于降维的幅度不够,谱聚类的运行速度和最后的聚类效果均不好。
  4. 聚类效果依赖于相似矩阵,不同的相似矩阵得到的最终聚类效果可能很不同。
    3)参考博文:
    谱聚类原理总结
    谱聚类及其实现详解

sklearn.cluster.AgglomerativeClustering

from sklearn.cluster import AgglomerativeClustering
AgglomerativeClustering(n_clusters=2,affinity='euclidean',memory=None,connectivity=None,compute_full_tree='auto',linkage='ward',pooling_func=<function mean>)
#affinity:距离计算公式:{eucidean,l1,l2,cosine,manhattan,precomputed}
#memory:是否要缓冲;
#connectivity:是否设定connectivity matrix;
#compute_full_tree:是否要进行完全聚类;
#linkage:进行聚类的标准:{ward,complete,average}

算法要点:
1)将两个不同的类进行融合的标准有3:

  1. ward:minimizes the sum of squared differences within all clusters;
  2. complete:minimizes the maximum distance between observations of pairs of clusters;
  3. average:minimizes the average of the distances between all observations of pairs of clusters.
  4. note that:Agglomerative cluster 可能会导致各个cluster间大小的不均衡;complete 能够导致非常不均衡簇的产生,相比而言 ward 可以产生相对均衡的簇,但是,ward只能采用欧几里得距离公式,不能使用其他的距离公式,因此,如果要用其他的距离公式进行聚类,可使用 average 策略。
    2)在算法中引入connectivity matrix 不仅可以将算法应用于更大的数据集,而且可以禁止聚类在特定的subset之间发生,如下图,可保证聚类不在各个folds间发生:

    3)度量两点之间距离的公式:{l1,l2,manhattan,cosine,ecludiean}
  5. l1 :比较实用于稀疏矩阵;
  6. cosine :对于数据全局的缩放,可以保持距离不变;

sklearn.cluster.DBSCAN

from sklearn.cluster import DBSCAN
DBSCAN(eps=0.5,min_samples=5,metric='euclidean',mtric_params=None,algorithm='auto',leaf_size=30,p=None,n_jobs=1)
#eps:对象半径;
#min_samples:一个核心对象应该拥有的最少sample数;
#metric:计算样本之间距离的公式;{precomputed,callable}
#algorithm:用来找最近邻样本点算法{'auto','ball_tree','ke_tree'}
#leaf_size:kd_tree或ball_tree中的叶子节点数;决定了搜索快慢;

算法要点:
1)对于给定ordered data,其多次运用该算法的聚类结果相同,但是,对于不同order的同一data,可能会得到不同的结果;
2)如果一个data中重复value较多,可以做成稀疏矩阵,将各个数据根据其重复度设定一个weight,进而,在用DBSCAN拟合数据;
3)参考博文:DBSCAN简介

sklearn.cluster.Birch

from sklearn.cluster import Birch
Birch(threshold=0.5,branching_factor=50,n_clusters=3,compute_labels=True,copy=True)
#threshold:subcluster的半径,如果某一样本点的加入,使subcluster半径超过这个值,则该样本会被分到其它的subcluster;
#branching_factor:每个node拥有的CF个数,如果新加入的CF使node中的CF数超过设定值,则将该Node一分为二;
#n_clusters:想要得到的cluster数量;如果n_cluster=None,则输出叶子结点中所有CF;如果n_cluster= int,则将叶子节点中的CF再次进行聚类;如果n_cluster=instance of sklearn.cluster.model,则将叶子节点中的CF看作new data,利用该model进行聚类;
#copy=False:将overwritten data;
#compute_labels=True:计算所有data sample的label;

算法要点:
1)优点:

  1. 节约内存,所有的样本都在磁盘上,CF Tree仅仅存了CF节点和对应的指针。
  2. 聚类速度快,只需要一遍扫描训练集就可以建立CF Tree,CF Tree的增删改都很快。
  3. 可以识别噪音点,进行异常点检测,还可以对数据集进行初步分类的预处理,降低数据实例数量;
  4. Birch和MiniBatch一样,都使用与数据量较大的情况,但是,MiniBatch适用于类别数较少或中等的情况,而Birch使用与类别数较大的情况;
    2)缺点:
  5. 由于CF Tree对每个节点的CF个数有限制,导致聚类的结果可能和真实的类别分布不同.
  6. 对高维特征的数据聚类效果不好。当n_feature > 20时,此时可以选择Mini Batch K-Means。
  7. 如果数据集的分布簇不是类似于超球体,或者说不是凸的,则聚类效果不好。
    3)参考博文:BIRCH聚类算法原理

clustering performance evaluation

from sklearn import metrics
metrics.adjusted_rand_score(labels_true,labels_pred)
metrics.adjuested_mutual_info_score(labels_true,labels_pred)
metrics.homogeneity_score(labels_true,labels_pred)
metrics.completeness_score(labels_true,labels_pred)
metrics.v_measure_score(labels_true,labels_pred)
metrics.homogeneity_completeness_v_measure(labels_true,labels_pred)
metrics.fowlkes_mallows_score(labels_true,labels_pred)
metrics.silhouette_score(X,labels,metric='euclidean')
metrics.calinski_harabaz_score(X,labels)

参考文献:Clustering

Class 2

sklearn.cluster.Biclustering

Biclustering 简介

Biclustering同时对rows和columns进行聚类,每一个cluster(rows,columns)被叫做一个bicluster,在聚类的过程中,会重新排列data matrix的rows和columns;比如,一个data matrix(10,10),通过Biclustering,可能会形成一个(3,2)的bicluster(submatrix);
sklearn.cluster.bicluster中有两种biclustering的function:

SpectralBiclustering

sklearn.cluster.bicluster.SpectralBiclustering(n_clusters=3,method='bistochastic',n_components=6,n_best=3,svd_method='randomized',n_svd_vecs=None,mini_batch=False,init='k-means++',n_init=10,n_jobs=1,random_state=None)

该algorithm形成的是一个hidden checkboard structure biclusters,每一个checkboard内各个点的值几乎相同,因此,该checkboard structure提供了一个对原data的近似;
checkboard structure如下图所示:

SpectralCoclustering

sklearn.cluster.bicluster.SpectralCoclustering(n_clusters=3,svd_method='randomized',n_svd_vecs=None,mini_batch=False,init='k-means++',n_init=10,n_jobs=1,random_state=None)

该algorithm形成的是一个diagonal structure,diagonal上的每一个bicluster代表了data matrix中的high values。此算法通过对data matrix gaph进行归一化,从而找到数据图中的heavy subgraph(The algorithm approximates the normalized cut of this graph to find heavy subgraphs.)其结构如下图所示:

  • 5
    点赞
  • 40
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
本程序是在python中完成,基于sklearn.cluster中的k-means聚类包来实现数据的聚类,对于里面使用的数据格式如下:(注意更改程序中的相关参数) 138 0 124 1 127 2 129 3 119 4 127 5 124 6 120 7 123 8 147 9 188 10 212 11 229 12 240 13 240 14 241 15 240 16 242 17 174 18 130 19 132 20 119 21 48 22 37 23 49 0 42 1 34 2 26 3 20 4 21 5 23 6 13 7 19 8 18 9 36 10 25 11 20 12 19 13 19 14 5 15 29 16 22 17 13 18 46 19 15 20 8 21 33 22 41 23 69 0 56 1 49 2 40 3 52 4 62 5 54 6 32 7 38 8 44 9 55 10 70 11 74 12 105 13 107 14 56 15 55 16 65 17 100 18 195 19 136 20 87 21 64 22 77 23 61 0 53 1 47 2 33 3 34 4 28 5 41 6 40 7 38 8 33 9 26 10 31 11 31 12 13 13 17 14 17 15 25 16 17 17 17 18 14 19 16 20 17 21 29 22 44 23 37 0 32 1 34 2 26 3 23 4 25 5 25 6 27 7 30 8 25 9 17 10 12 11 12 12 12 13 7 14 6 15 6 16 12 17 12 18 39 19 34 20 32 21 34 22 35 23 33 0 57 1 81 2 77 3 68 4 61 5 60 6 56 7 67 8 102 9 89 10 62 11 57 12 57 13 64 14 62 15 69 16 81 17 77 18 64 19 62 20 79 21 75 22 57 23 73 0 88 1 75 2 70 3 77 4 73 5 72 6 76 7 76 8 74 9 98 10 90 11 90 12 85 13 79 14 79 15 88 16 88 17 81 18 84 19 89 20 79 21 68 22 55 23 63 0 62 1 58 2 58 3 56 4 60 5 56 6 56 7 58 8 56 9 65 10 61 11 60 12 60 13 61 14 65 15 55 16 56 17 61 18 64 19 69 20 83 21 87 22 84 23 41 0 35 1 38 2 45 3 44 4 49 5 55 6 47 7 47 8 29 9 14 10 12 11 4 12 10 13 9 14 7 15 7 16 11 17 12 18 14 19 22 20 29 21 23 22 33 23 34 0 38 1 38 2 37 3 37 4 34 5 24 6 47 7 70 8 41 9 6 10 23 11 4 12 15 13 3 14 28 15 17 16 31 17 39 18 42 19 54 20 47 21 68 22
Python Kmeans聚类是一种常用的聚类算法,可以将数据分为不同的群组。根据引用的代码示例,可以使用scikit-learn库中的KMeans类来实现Kmeans聚类算法。首先,导入所需的库,并读取数据集。然后,使用KMeans类来拟合数据并进行聚类。最后,使用散点图可视化结果。 具体的代码示例如下: ```python import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn.cluster import KMeans # 读取数据集 df = pd.read_excel('13信科学生成绩.xlsx') data = np.array(df) # 使用KMeans进行聚类 y_pred = KMeans(n_clusters=3, random_state=9).fit_predict(data) # 可视化结果 plt.scatter(data[:, 0], data[:, 1], c=y_pred) plt.show() ``` 根据引用中的代码,首先导入所需的库,并读取数据集。然后使用KMeans类来拟合数据并进行聚类,并将聚类结果绘制成散点图。 根据引用中提供的完整代码,可以看到Kmeans聚类的核心思想是初始化随机的k个中心点,然后通过迭代来不断优化中心点和样本的归属关系,直到满足停止条件。 希望以上内容对你有所帮助。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [Python实现Kmeans聚类算法](https://download.csdn.net/download/weixin_38750829/12870422)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"] - *2* [python实现kmeans聚类](https://blog.csdn.net/weixin_46657323/article/details/122990560)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"] - *3* [【机器学习】全面解析Kmeans聚类算法(Python)](https://blog.csdn.net/fengdu78/article/details/122183696)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Sarah ฅʕ•̫͡•ʔฅ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值