windows+sublime+latex

1. 基本要求 TeXlive 或者 MiKTeX (本文以 TeXlive 2015 为例) Sublime Text 3 LaTeXTools 插件 TeXlive 和 Sublime Text 的安装这里不再赘述,需要注意的一个事情是,安装之后需要将 TeXlive 的 bin 目录...

2018-12-05 16:30:13

阅读数 46

评论数 0

K-D Tree 算法详解及Python实现

K-D Tree 算法   k−d treek−d tree\mathrm{k-d\ tree}即k−dimensional treek−dimensional tree\mathrm{k-d...

2018-03-08 10:25:42

阅读数 678

评论数 0

密度聚类之DBSCAN及Python实现

密度聚类 密度聚类,即基于密度的聚类(density-based clustering),此类算法假设聚类结构能通过样本分布的紧密程度确定。前面所讲的原型聚类及层次聚类等都是把距离(欧式距离,闵科夫斯基距离,曼哈顿距离等)作为两个样本或者两个簇之间相似度的评价指标,因此导致了最终聚类结构大都是球...

2018-03-08 10:23:30

阅读数 829

评论数 0

层次聚类之AGNES及Python实现

层次聚类 层次聚类,顾名思义,就是一层一层的进行聚类,它试图在不同层次对数据集进行划分,可以由上向下把大的类别分割,即“自顶向下”的分拆策略(见下面AGNES部分),也可以由下向上对小的类别进行聚合,即“自底向下”的聚合策略:开始把所有的样本都归为一类,然后逐步将他们划分为更小的单元,直到最后每...

2018-03-08 10:22:14

阅读数 1145

评论数 0

原型聚类之高斯混合聚类及Python实现

高斯混合模型聚类(Gaussian Mixture Mode,GMM) 高斯混合模型是一种概率式的聚类方法,它假定所有的数据样本 xxx由kkk个混合多元高斯分布组合成的混合分布生成。 p(x)=∑i=1kαi⋅p(x|μi,Σi)(1.1)(1.1)p(x)=∑i=1kαi⋅p(x|μi,Σ...

2018-03-08 10:20:14

阅读数 571

评论数 0

原型聚类之学习向量量化及Python实现

学习向量量化(Learning Vector Quantization) 学习向量量化(Learning Vector Quantization,简称LVQ)属于原型聚类,即试图找到一组原型向量来聚类,每个原型向量代表一个簇,将空间划分为若干个簇,从而对于任意的样本,可以将它划入到它距离最近的簇...

2018-03-08 10:19:19

阅读数 648

评论数 3

原型聚类之K均值算法及Python实现

原型聚类(prototype-based clustering) 原型聚类,此类算法假设聚类结构能通过一组原型刻画,在现实聚类任务中极为常用,通常情形下,算法先对原型进行初始化,然后对原型进行迭代更新求解,采用不同的原型表示,不同的求解方式,将产生不同的算法,主要有:K均值算法、学习向量量化和高...

2018-03-08 10:17:48

阅读数 250

评论数 0

聚类之距离计算及Python实现

距离计算 我们通常采用计算“距离”的方法来度量不同样本之间的相似性,进而判断该样本的大致类别。距离首先是一个几何概念,用dist(⋅,⋅)dist(⋅,⋅)\mathrm{dist}(\cdot,\cdot)表示,其中最为任熟悉的是二维和三维几何空间的欧几里德距离,随着数据维度的增大,距离在维数...

2018-03-08 10:16:38

阅读数 825

评论数 0

聚类之性能度量详解

概念简述 聚类是什么呢?我们都听说过“物以类聚”,即把“志同道合”的 数据分到一起归为一类,不同类之间在”志向“上具有较大分歧。举个栗子,茫茫人生中,我们普通大众会被God根据缘分进行聚类,缘分好的话,会成为朋友,甚至成为了可以互诉衷肠,”余生请指教“的男女盘友,那缘分不好的应该是一生从未谋面或...

2018-03-08 10:15:32

阅读数 665

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭