汪先森-Young
码龄7年
关注
提问 私信
  • 博客:54,324
    54,324
    总访问量
  • 9
    原创
  • 1,872,371
    排名
  • 20
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:浙江省
  • 加入CSDN时间: 2017-12-28
博客简介:

FAICULTY的博客

查看详细资料
个人成就
  • 获得28次点赞
  • 内容获得9次评论
  • 获得179次收藏
  • 代码片获得476次分享
创作历程
  • 9篇
    2018年
TA的专栏
  • 聚类详细讲解
    7篇
  • 图片
  • k-d tree
  • 机器学习
    1篇
  • 行为识别
  • 工具
    1篇
创作活动更多

如何做好一份技术文档?

无论你是技术大神还是初涉此领域的新手,都欢迎分享你的宝贵经验、独到见解与创新方法,为技术传播之路点亮明灯!

182人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

windows+sublime+latex

1. 基本要求TeXlive 或者 MiKTeX (本文以 TeXlive 2015 为例)Sublime Text 3LaTeXTools 插件TeXlive 和 Sublime Text 的安装这里不再赘述,需要注意的一个事情是,安装之后需要将 TeXlive 的 bin 目录(C:\texlive\2015\bin\win32)和 添加到系统的环境变量(PATH)中。下面再稍...
原创
发布博客 2018.12.05 ·
1209 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

K-D Tree 算法详解及Python实现

K-D Tree 算法  k−d treek−d tree\mathrm{k-d\ tree}即k−dimensional treek−dimensional tree\mathrm{k-dimensional\ tree},是一种分割k维数据空间的数据结构,常用来多维空间关键数据的搜索(如:范围搜素及近邻搜索),是二叉空间划分树的一个特例。通常,对于维...
原创
发布博客 2018.03.08 ·
6384 阅读 ·
3 点赞 ·
1 评论 ·
22 收藏

密度聚类之DBSCAN及Python实现

密度聚类密度聚类,即基于密度的聚类(density-based clustering),此类算法假设聚类结构能通过样本分布的紧密程度确定。前面所讲的原型聚类及层次聚类等都是把距离(欧式距离,闵科夫斯基距离,曼哈顿距离等)作为两个样本或者两个簇之间相似度的评价指标,因此导致了最终聚类结构大都是球状簇或者凸形集合,对任意形状的聚类簇比较吃力,同时对噪声数据不敏感,而基于密度的聚类算法可以发现任意形...
原创
发布博客 2018.03.08 ·
17142 阅读 ·
10 点赞 ·
1 评论 ·
53 收藏

层次聚类之AGNES及Python实现

层次聚类层次聚类,顾名思义,就是一层一层的进行聚类,它试图在不同层次对数据集进行划分,可以由上向下把大的类别分割,即“自顶向下”的分拆策略(见下面AGNES部分),也可以由下向上对小的类别进行聚合,即“自底向下”的聚合策略:开始把所有的样本都归为一类,然后逐步将他们划分为更小的单元,直到最后每个样本都成为一类。在这个迭代的过程中通过对划分过程中定义一个松散度,当松散度最小的那个类的结果都小于一...
原创
发布博客 2018.03.08 ·
8236 阅读 ·
5 点赞 ·
1 评论 ·
42 收藏

原型聚类之高斯混合聚类及Python实现

高斯混合模型聚类(Gaussian Mixture Mode,GMM)高斯混合模型是一种概率式的聚类方法,它假定所有的数据样本 xxx由kkk个混合多元高斯分布组合成的混合分布生成。 p(x)=∑i=1kαi⋅p(x|μi,Σi)(1.1)(1.1)p(x)=∑i=1kαi⋅p(x|μi,Σi)p(x)=\sum_{i=1}^{k}\alpha _{i}\cdot p(x | \mu _{i...
原创
发布博客 2018.03.08 ·
6003 阅读 ·
3 点赞 ·
2 评论 ·
41 收藏

原型聚类之学习向量量化及Python实现

学习向量量化(Learning Vector Quantization)学习向量量化(Learning Vector Quantization,简称LVQ)属于原型聚类,即试图找到一组原型向量来聚类,每个原型向量代表一个簇,将空间划分为若干个簇,从而对于任意的样本,可以将它划入到它距离最近的簇中,不同的是LVQ假设数据样本带有类别标记,因此可以利用这些类别标记来辅助聚类。 学习向量量化算法如...
原创
发布博客 2018.03.08 ·
3114 阅读 ·
0 点赞 ·
4 评论 ·
15 收藏

原型聚类之K均值算法及Python实现

原型聚类(prototype-based clustering)原型聚类,此类算法假设聚类结构能通过一组原型刻画,在现实聚类任务中极为常用,通常情形下,算法先对原型进行初始化,然后对原型进行迭代更新求解,采用不同的原型表示,不同的求解方式,将产生不同的算法,主要有:K均值算法、学习向量量化和高斯混合聚类。K均值算法K均值算法,顾名思义,可知将一组数据D={x1,x2,...,xm}...
原创
发布博客 2018.03.08 ·
1077 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

聚类之距离计算及Python实现

距离计算我们通常采用计算“距离”的方法来度量不同样本之间的相似性,进而判断该样本的大致类别。距离首先是一个几何概念,用dist(⋅,⋅)dist(⋅,⋅)\mathrm{dist}(\cdot,\cdot)表示,其中最为任熟悉的是二维和三维几何空间的欧几里德距离,随着数据维度的增大,距离在维数、幂次数等方面被推广了,距离被抽象为满足一些基本性质: 非负性:dist(xi,xj)≥0;(...
原创
发布博客 2018.03.08 ·
8307 阅读 ·
6 点赞 ·
0 评论 ·
22 收藏

聚类之性能度量详解

概念简述聚类是什么呢?我们都听说过“物以类聚”,即把“志同道合”的 数据分到一起归为一类,不同类之间在”志向“上具有较大分歧。举个栗子,茫茫人生中,我们普通大众会被God根据缘分进行聚类,缘分好的话,会成为朋友,甚至成为了可以互诉衷肠,”余生请指教“的男女盘友,那缘分不好的应该是一生从未谋面或者一面之缘或者是如《再见前任3》中那样成为了最熟悉的陌生人…好像扯远了。 言归正传,用标准的普通话来...
原创
发布博客 2018.03.08 ·
2005 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏