第四章、区间估计
4.1区间估计基本概念
4.1.1区间估计
参数估计分为点估计和区间估计,第三章中我们已经对众多点估计方法有了比较详细的介绍。而现在我们思考下,用点估计量来估计参数,估计正确的概率是多少呢?如果是连续型总体的话,估计量等于参数真值的概率是0!也就是说,点估计对于判断准确的把握是微乎其微的,所以我们需要提出区间估计。
点估计是用一个统计量来作为参数的估计,区间估计是找两个统计量
和
,其中对任何样本观测值都有
,并用区间
作为参数的
区间估计(量)。(注意,
闭区间不是必要的,可以是开区间也可以是左开右闭等等)
例
是取自正态总体
的样本,那么
就是
的一个区间估计.在点估计部分,我们用样本均值作为
的点估计量,似乎这样是比较精确的(因为只用量来估计),但是样本均值刚好等于
的概率是为0的,而用区间
来估计,正确的概率是
也就是说,随机区间
涵盖参数真值的概率是0.9544(
注意不说
属于区间的概率)
,这是个比较高的概率!
4.1.2评价区间估计好坏
就像点估计部分提到的一样,根据区间估计的定义,我们可以选取任何满足
的两个统计量作为任何参数的区间估计。所以我们需要对给定的区间估计,给出一些评价的准则。我们在点估计部分提到了非常多的准则:无偏,有效,相合,渐进正态,均方误差等等。但区间估计的评价准则就只有两个:置信度和精确度。
※置信度准则
随机区间涵盖参数真值的概率称为置信度,即下面这个概率
(注意我们不说参数
属于区间的概率,因为这个概率中随机项是区间)
我们希望置信度越高越好。
然而这个概率一般来说是与
有关的,如果一个区间估计对于某些
置信度比较高,对于另外一些则比较低,那么我们也不认为这样的区间估计是好的。我们希望的是最小的置信度也比较高,这里的最小置信度也就是
置信系数,定义为
所以我们希望置信系数能够比较高。