最大值减最小值等于区间长度_数理统计第19讲(区间估计概念,枢轴量法)

本文介绍了区间估计的基本概念,包括置信区间、同等置信区间和置信限。讲解了如何评价区间估计的好坏,强调了置信度与精确度之间的权衡。此外,文章还探讨了枢轴量法在构造区间估计中的作用,包括如何构造枢轴量、选取常数以及等价改写概率。
摘要由CSDN通过智能技术生成

第四章、区间估计

4.1区间估计基本概念

4.1.1区间估计

参数估计分为点估计和区间估计,第三章中我们已经对众多点估计方法有了比较详细的介绍。而现在我们思考下,用点估计量来估计参数,估计正确的概率是多少呢?如果是连续型总体的话,估计量等于参数真值的概率是0!也就是说,点估计对于判断准确的把握是微乎其微的,所以我们需要提出区间估计。

点估计是用一个统计量来作为参数的估计,区间估计是找两个统计量

,其中对任何样本观测值都有
,并用区间
作为参数的
区间估计(量)。(注意, 闭区间不是必要的,可以是开区间也可以是左开右闭等等)

是取自正态总体
的样本,那么
就是
的一个区间估计.在点估计部分,我们用样本均值作为
的点估计量,似乎这样是比较精确的(因为只用量来估计),但是样本均值刚好等于
的概率是为0的,而用区间
来估计,正确的概率是

也就是说,随机区间

涵盖参数真值的概率是0.9544(
注意不说
属于区间的概率)
,这是个比较高的概率!

4.1.2评价区间估计好坏

就像点估计部分提到的一样,根据区间估计的定义,我们可以选取任何满足

的两个统计量作为任何参数的区间估计。所以我们需要对给定的区间估计,给出一些评价的准则。我们在点估计部分提到了非常多的准则:无偏,有效,相合,渐进正态,均方误差等等。但区间估计的评价准则就只有两个:置信度和精确度。

※置信度准则

随机区间涵盖参数真值的概率称为置信度,即下面这个概率

(注意我们不说参数

属于区间的概率,因为这个概率中随机项是区间)
我们希望置信度越高越好。

然而这个概率一般来说是与

有关的,如果一个区间估计对于某些
置信度比较高,对于另外一些则比较低,那么我们也不认为这样的区间估计是好的。我们希望的是最小的置信度也比较高,这里的最小置信度也就是
置信系数,定义为

所以我们希望置信系数能够比较高。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值