两个向量组的秩相等说明什么_向量分析-II

af3126e4ec9d7bcd3ffd643dcbd7f999.png

接下来进入向量场啦,在电磁学和流体力学中均有重要的应用。

本章最后的部分有参考赵老师的《新概念物理-电磁学》

先介绍几个基本概念:

若有函数

,那么

若变换坐标

,函数
的偏导:

然后就是梯度(gradient)的定义:

散度(divergence):

比如,对于向心力场:

例如:

则当n=-2时,场的散度为零。这个结论在点电荷与磁荷产生的场中是很有用的。

旋度(curl):

之后我们会看到,将

当成operator会有助于理解坐标变化时各量的变化,以及,推导
相关的公式。

接着看一下向心力场的旋度(聪明的你已经知道了答案):

下面我们来处理一下相关的

公式:

这就是当一个标量场和矢量场相乘时,如何快速求散度。

此处几乎是把

当成一个向量,然后按照三重矢积的形式展开。不同之处在于:1.
要作用于向量或者标量场,按照惯例写在它们的前面;2.第一个式子中的
仅作用于向量B,而二式中的
仅作用于向量A。

你可能会好奇

是怎么定义的:

也就是说:

这里,我们把算子看成一个向量来点乘了。之前这里的定义有误,今天学习磁场中带电粒子的动量守衡的时候意识到了...其实确实这样理解才会更自然。

把之前的两个式子加起来,会得到什么呢?

左边的系数并非2,是因为分步的偏导加在一起就是一个既对向量A也对向量B作用


基础的介绍完了,下面是一些

其他应用:

拉普拉斯算符

若有势(potential)V(r):

如果

可以看出,若n=0或n=-1,拉普拉斯算符作用于函数将得到0,譬如,对于点电荷的电势作用拉普拉斯算符就是如此。


无旋场(irrotational field)和无源场(solenoidal field):
看两个式子就明白啦:

则梯度的旋度必为零,梯度得到无旋场。

则旋度的散度必为零,旋度得到无源场。


矢量中的拉普拉斯

这里的展开也是遵循了三重矢积。而

,也即
,就是作用在向量上的拉普拉斯算符。比如在笛卡尔坐标系中,它的含义就是:

请注意,这里是对各分量作用。


麦克斯韦方程组,磁矢势,和洛伦兹规范。

我们知道,在真空中:

时间和空间上的导数的求导顺序可互换:

现在引入磁矢势

,使得

也即(根据斯托克斯定理,下一篇我们将会推导):

现在,我们来思考一下引入磁矢势的合理性(当然,后面讲到亥姆霍兹定理时会有更深入的介绍)。

由于磁感应线永远是闭合的,磁场中闭合曲面的净磁通量一定为零,此结论等价于“不存在磁单极子”,可以说是高斯定理在磁场中的应用。这个结论也可以用毕奥-萨法尔定律考察单个极小电流元产生的圆环(不是圆圈,因为需要求面积上的通量)磁感应线证明:

想象一个任意闭合曲面截取了此磁感应环的一部分,从此圆环的环形轴线上P点进入,Q点出。首先,矢径平方的大小,也就是电流元到两点的距离是相等的,是半径的平方加上常数高度的平方,并且由此推出夹角

也相等。我们知道磁通量是磁感应强度乘上它
垂直穿过的面积。也就是说,虽然环穿入和穿出闭合面时的截面可能是任意的形状,但是我们最终要用的面积是圆环的截面,之前已经证明
在两侧是一样的(实际上在整个圆环上都一样),现在又知道
相等,则穿出与穿入的磁通量数值一样,那么净通量就是零。这也是磁场的无源性质决定的。

假如我们现在要把一个闭合面分为两部分,每部分的非闭合曲面的通量会是多少呢?

注意,第二部分前面的负号是因为一个闭合曲面的矢面积必然为零,所以两个面的法向必然有一个和规定正法向相反。好了,我们注意到两个面的磁通量是相等的,这就意味着,通量多少和面的性质有关(磁场在此处的分布,面积大小)。那么,什么决定了面的性质呢?实际上就是如何分割闭合面的——靠的是选定的边界线。所以,就可能找到一个矢量,沿边界线的积分等于通过面的磁通量。

实际上磁矢势的推导还可以通过毕奥-萨法尔定律,这里不赘述。

引入磁矢势后,我们有:

括号里的式子取旋度之后就为零了,回忆起之前提到的无旋场,则可知

是一个函数的梯度:

我们还知道非齐次方程(空间中有电流/电荷情况下的奥斯特和高斯定理):

现在(请瞪大您的双眼)我们引入洛伦兹规范(Lorenz Gauge)。电磁场在洛伦兹规范下不变是其非常重要的一个部分。而至于它为什么不变,等到之后解释Helmholtz Theorem的时候就真相大白了。怀着这份小小的疑问去看H Theorem的推导,才更能深刻理解电磁场的性质。

我们限制了磁矢势的散度:

接下来,我们将看到波函数在非齐次微分方程中的对应:

又因为:

所以:

这里,我们看到电流密度和产生的磁矢势是被波函数联系起来的。当然,我们也可以不通过磁矢势而得到麦克斯韦方程组的其次波函数方程。

下一章将涉及斯托克斯定理,散度定理,格林定理,向量场中的积分,可能还有一点Dirac-Delta函数。讲完这些我们就可以进入Helmholtz Theorem,更加深刻的理解洛伦兹规范和向量场积分。

5cf2021e21287457f7885981204ba64a.png
表情包
插入表情
评论将由博主筛选后显示,对所有人可见 | 还能输入1000个字符
相关推荐
©️2020 CSDN 皮肤主题: 数字20 设计师:CSDN官方博客 返回首页