两个向量组的秩相等说明什么_高中数学知识点复习资料归纳整理:平面向量的概念、线性运算及坐标运算...

b5879185d041ba886531c73f8a692ace.gif点击蓝字关注我们

平面向量的概念、线性运算及坐标运算

【考纲要求】

1.了解向量的实际背景;理解平面向量的概念及向量相等的含义;理解向量的几何表示.

2.掌握向量加法、减法的运算,并理解其几何意义;掌握向量数乘的运算及其几何意义,理解两个向量共线的含义;了解向量线性运算的性质及其几何意义.

3.了解平面向量的基本定理及其意义,掌握平面向量的正交分解及其坐标表示,会用坐标表示平面向量的加法、减法与数乘运算,理解用坐标表示的平面向量共线的条件.

【知识网络】

d1dd36eeb0d25ad3ef5a6c1d773d805f.png

【考点梳理】

【高清课堂:平面向量的概念与线性运算401193知识要点】

考点一、向量的概念

1.向量:既有大小又有方向的量.通常用有向线段a52f394d1503138ddd852a9fc0d1b19a.png表示,其中A为起点,B为终点.

向量a52f394d1503138ddd852a9fc0d1b19a.png的长度718f633e1bb24b465fe94215ad1d92fd.png又称为向量的模;

长度为0的向量叫做零向量,长度为1的向量叫做单位向量.

2.方向相同或相反的非零向量叫做平行向量,规定零向量与任一向量平行.

平行向量可通过平移到同一条直线上,因此平行向量也叫共线向量.

3.长度相等且方向相同的向量叫做相等向量.零向量与零向量相等.

4. 与8eeabe24f9e402ebc18ac4a1f8007588.png长度相等,方向相反的向量叫做8eeabe24f9e402ebc18ac4a1f8007588.png的相反向量,规定零向量的相反向量是零向量.

要点诠释:

①有向线段的起、终点决定向量的方向,a52f394d1503138ddd852a9fc0d1b19a.pngbd9f7a280364efd7a111fc9af48bb40a.png表示不同方向的向量;

②有向线段的长度决定向量的大小,用718f633e1bb24b465fe94215ad1d92fd.png表示,04a6a5b59d9c0821054b19d5a4e968f1.png.

③任意两个非零的相等向量可经过平移重合在一起,因此可用一个有向线段表示,而与起点无关.

考点二、向量的加法、减法

1.向量加法的平行四边形法则

平行四边形ABCD中(如图),

a4f02d42cdeb36d2a04a8052384e77fe.png

向量4330e860d6698299b3acf29b9c3e22d9.pnga52f394d1503138ddd852a9fc0d1b19a.png的和为3cbfaf18af3d971aff38b94bedc90d86.png,记作:f14845c08db4e62861dacb74d2dc58a9.png.(起点相同)

2.向量加法的三角形法则

根据向量相等的定义有:dad5fcbe65c64b866ab99ffc3e11988d.png,即在Δ814c5f753991bdd12b826b1b4a69492e.png中,9e895f94642e86484bec582a19e2150b.png.

首尾相连的两个向量的和是以第一个向量的起点指向第二个向量的终点.

规定:零向量与向量a52f394d1503138ddd852a9fc0d1b19a.png的和等于a52f394d1503138ddd852a9fc0d1b19a.png.

3. 向量的减法

向量a52f394d1503138ddd852a9fc0d1b19a.png与向量bd9f7a280364efd7a111fc9af48bb40a.png叫做相反向量.记作:9fac52386859b13b91b142d9fcbab19f.png.

e88d619cb15ff2eaf7474f4e813b8a37.png.

要点诠释:

①关于两个向量的和应注意:两个向量的和仍是一个向量;使用三角形法则时要注意“首尾相连”;当两个向量共线时,三角形法则适用,而平行四边形法则不适用.

②向量减法运算应注意:向量的减法实质是加法的逆运算,差仍为一个向量;用三角形法则作向量减法时,记住“连结两个向量的终点,箭头指向被减向量”.

要点三、实数与向量的积

1.定义:

一般地,实数0a1c340c3d003e5a7b6e1e622c5e7645.png与向量e1e1a099be13eab457270befcc12a403.png的积是一个向量,记作178152c6cdcac86a7ed40d05dd92789e.png,它的长与方向规定如下:

(1)c24680ae2bc2d09ca185ab1c76637dc4.png

(2)当0a1c340c3d003e5a7b6e1e622c5e7645.png>0时,178152c6cdcac86a7ed40d05dd92789e.png的方向与e1e1a099be13eab457270befcc12a403.png的方向相同;当0a1c340c3d003e5a7b6e1e622c5e7645.png<0时,178152c6cdcac86a7ed40d05dd92789e.png的方向与e1e1a099be13eab457270befcc12a403.png的方向相反; 当0a1c340c3d003e5a7b6e1e622c5e7645.png=0时,b9576223ae8fb2287f102ec4a0028f93.png

2.运算律

0a1c340c3d003e5a7b6e1e622c5e7645.pngd393f4468a63d44266d41dc5dc4b19c0.png为实数,则

(1)0fce83261d388a3c32df86090147a51f.png

(2)9e472133ede20bfd5471cad201e1ae93.png

(3)2e4991785fd9ccaee2a9e920a51b6d80.png

3.向量共线的充要条件

已知向量e1e1a099be13eab457270befcc12a403.png1fd7885d79d99f1f8e0a8ca459ece6b4.png是两个非零共线向量,即005c5335d18f51c0afc47dc46911f345.png,则e1e1a099be13eab457270befcc12a403.png1fd7885d79d99f1f8e0a8ca459ece6b4.png的方向相同或相反.

向量edd03480d230d01b5fa6760506e553e0.png1fd7885d79d99f1f8e0a8ca459ece6b4.png共线,当且仅当有唯一一个实数d3a96228d357d131c748f24af1530654.png,使bfa49b46510cf990836b17892842fef2.png.

要点诠释:

①向量数乘的特殊情况:当a040dd141fd173818b665a9cf039a570.png时,a3202eae7ef497d06938f908561282b2.png;当9d957e284c4e233e366dc47683e01799.png时,也有a3202eae7ef497d06938f908561282b2.png;实数和向量可以求积,但是不能求和、求差.

②平面向量基本定理是建立向量坐标的基础,它保证了向量与坐标是一一对应的,在应用时,构成两个基地的向量是不共线的向量.

考点四、平面向量的坐标运算

1.平面向量的坐标表示

选取直角坐标系的x轴、y轴上的单位向量2f67552e2aba2b152af95461c56cef0d.png4f8cb4e5e7810eae8f480ceedde1fa1d.png为基底,由平面向量基本定理,该平面内任一向量e1e1a099be13eab457270befcc12a403.png表示成edb9543f6072f60529aed132eec4ae7d.png的形式,由于e1e1a099be13eab457270befcc12a403.png与数对(x,y)是一一对应的,因此把(x,y)叫做向量e1e1a099be13eab457270befcc12a403.png的坐标表示.

2.平面向量的坐标运算

已知8b974e1ea9a9f1234627a705cec41610.png49321fdcd1eaa3633facf66ff97eef30.png,则

(1)3c2c41be554437d8df623751c4bac817.png

(2)834835a7f8887e3ddb7f408a45cb80da.png

3.平行向量的坐标表示

已知8b974e1ea9a9f1234627a705cec41610.png49321fdcd1eaa3633facf66ff97eef30.png,则b00746031efbd69a197b4d10ac37b002.png(a104bd96cf54b4ca66d04f155dc02ac7.png)

要点诠释:

①若8b974e1ea9a9f1234627a705cec41610.png49321fdcd1eaa3633facf66ff97eef30.png,则5cb218245d301dbf8963a72993eb7752.png的充要条件不能表示成5b588d6e7eea459d20f699bfeb446bbe.png,因为11f1fc74007e32edffac391d8434377d.png有可能等于0,所以应表示为03b9d52e7b07ec3ea10bfa98ac7cd14c.png;同时5cb218245d301dbf8963a72993eb7752.png的充要条件也不能错记为b47a29a0d7f68018623be804938538da.pnge81570f05236a897aa0fa8188090e61b.png等.

②若8b974e1ea9a9f1234627a705cec41610.png49321fdcd1eaa3633facf66ff97eef30.png,则5cb218245d301dbf8963a72993eb7752.png的充要条件是bfa49b46510cf990836b17892842fef2.png,这与03b9d52e7b07ec3ea10bfa98ac7cd14c.png在本质上是没有差异的,只是形式上不同.

【典型例题】

类型一、平面向量的相关概念

例1. 下列说法中正确的是                 

① 非零向量e1e1a099be13eab457270befcc12a403.png与非零向量1fd7885d79d99f1f8e0a8ca459ece6b4.png共线,向量1fd7885d79d99f1f8e0a8ca459ece6b4.png与非零向量e9552e39d5f2a5dea24aec90cd374a23.png共线,则向量e1e1a099be13eab457270befcc12a403.png与向量e9552e39d5f2a5dea24aec90cd374a23.png共线;

② 任意两个相等的非零向量的始点与终点是一平行四边形的四个顶点;

③ 向量e1e1a099be13eab457270befcc12a403.png1fd7885d79d99f1f8e0a8ca459ece6b4.png不共线,则e1e1a099be13eab457270befcc12a403.png1fd7885d79d99f1f8e0a8ca459ece6b4.png所在直线的夹角为锐角;

④ 零向量模为0,没有方向;

⑤ 始点相同的两个非零向量不平行;

⑥ 两个向量相等,它们的长度就相等;

⑦ 若非零向量a52f394d1503138ddd852a9fc0d1b19a.png47f6c14ccf00d43e5b06296f8526210e.png是共线向量,则A、B、C、D四点共线。

【答案】①⑥

【解析】

① 向量共线即方向相同或相反,故非零向量间的共线关系是可以传递的;

②相等向量是共线的,故四点可能在同一直线上;

③ 向量不共线,仅指其所在直线不平行或不重合,夹角可能是直角或锐角;

④零向量不是没有方向, 它的方向是任意的;

⑤ 向量是否共线与始点位置无关;

⑥ 两个向量相等,它们的长度相等,方向相同;

⑦共线向量即平行向量,非零向量a52f394d1503138ddd852a9fc0d1b19a.png47f6c14ccf00d43e5b06296f8526210e.png是共线向量,可能A、B、C、D四点共线,也可能AB、CD平行。

【总结升华】

从向量的定义可以看出,向量既有代数特征又有几何特征,因此借助于向量可将代数问题与几何问题相互转化。零向量是一特殊向量,它似乎很不起眼,但又处处存在。因此,正确理解和处理零向量与非零向量之间的关系值得我们重视。对于平行向量或共线向量,它们可以在同一直线上,也可以所在直线互相平行,方向可以相同也可以相反;相等向量则必须大小相等、方向相同。

 举一反三:

【变式1】判断下列各命题是否正确,并说明理由:

(1) 若ea5b36ff61c870352f42cb67ea4817a4.png,则8018f901c52e4f52c048e8e58ba197e9.png

(2) 单位向量都相等;

(3) 两相等向量若起点相同,则终点也相同;

(4) 若8018f901c52e4f52c048e8e58ba197e9.png47c615415fdd711de95283ddcba4733a.png,则ba1c072deccb4439a9666527236f9104.png

(5) 若c615969a6fadc81d095aaa2bc8a48fcc.png,则b64a47b1d4d5eb90705ab9a33a7c9320.png

(6) 由于零向量方向不确定,故它不能与任意向量平行.

【答案】

(1) 错;模相等,方向未必相同;

(2) 错;模相等,方向未必相同;

(3) 正确;因两向量的模相等,方向相同,故当他们的起点相同时,则终点必重合;

(4) 正确;由定义知是对的;

(5) 错;向量不能比较大小;

(6) 错;规定:零向量与任意向量平行.

【变式2】在复平面中,已知点A(2,1),B(0,2),C(-2,1),O(0,0).

给出下面的结论:

①直线OC与直线BA平行;②c93a521d31fcf31de4d37bec234a21c1.png;③2436c02c59efae79e6d21d474079ae8f.png;④e5e411b7d028737704503cb0955dbafd.png.

其中正确结论的个数是(    )

A.1    B.2    C.3    D.4

【答案】C

【解析】1a45a7e7b334abacc1982e23bc447004.pngc598870ce06b792fa167aa8b417b592b.png,∴OC∥AB,①正确;

8527887f6ce0d89aef9aac5f47e99bbf.png,∴②错误;

e2d61f593e9ead0af67b93eeed4d469d.png,∴③正确;

90d9932aa84aafad351baabfb258630b.pngb5e3d9bba4c3d7019f8cdfaebb46fb8f.png,∴④正确. 故选C.

类型二、平面向量的加减及其线性运算

例2. 如图,已知梯形4e2eeaec80dc61d8a8252f78cbc3ef9c.png中,82a2c72cdd5597c61dbfa621d657858e.png,且58d318a3748b49f3476584f8fa25d66a.png1c0f97175142513a173c9db42238245a.png49ac537a945df530c2874684a85b083d.png分别是aba50dbce5738a3a4c326dfc1590ed65.png953ee9d7760fc69fc8dfa0835b5dd128.png的中点,设5980ff76390a1a1700d4a9730b8a2c8c.pngff2040f518c309921dfb75b43e2f2980.png,试以e1e1a099be13eab457270befcc12a403.png1fd7885d79d99f1f8e0a8ca459ece6b4.png为基底表示9b67aa0fbf7c426294ff17e6f7a4c956.pngf1f960020a8111b501898c083974d817.png0ee2f84378577abcdc0a348b4243c296.png.

7309d3b8deff49867ff2b95571d51954.png

【解析】连结0ec8093833c073c493523ee37fcfa340.png,则

388cfb4e324b3e005c65694659833e90.png

2cd4b586f27c63f9237a08d31618c0a7.png  

5cbc05717a0f1538829e7d05f1089516.pngdd2da96a462dc05497b0a46531dedb31.png

e921fdf3ec30d6ab53603cf4384eface.png

7e1696012c7e96872c8d7c242ff68761.png

b50b3f14cf2b6a147eb6610bb78ebd2f.png.

【总结升华】①本题实质上是平面向量基本定理的应用,由于fc26efe210606ff91bd086f71d1b9dc1.pnga52f394d1503138ddd852a9fc0d1b19a.png是两个不共线的向量,那么平面内的所有向量都可以用它们表示出来.

②本题的关键是充分利用几何图形中的线段的相等、平行关系,结合平行向量、相等向量的概念,向量的线性运算,变形求解.

举一反三:

【变式1】在△ABC中,已知D是AB边上一点,若089ba9e8d993863de3c59532a7fd0be9.png7faaed03bda825ac5cd69fa54e2c9bd6.png,则0a1c340c3d003e5a7b6e1e622c5e7645.png=________.【答案】6f6f3018491cef334090cf7cf14ae424.png

【解析】由图知790006edf3cd5a02240e455908eedc31.png    ①

be83643d1124bcf5b4b5d26c01e8aaf7.png1061ea1003d18832569204094aaae06f.png,    ②

2eb34098f6141bd130ba794cb6b84fc2.png

①+②×2得:64c173232b30a36053c371c38fb12f21.png,∴20809f5c7f813494a9d3bdbe2bc823f6.png,∴8e221e52092c7170caad6d3b97a253aa.png.

【变式2】△ABC中,点D在AB上,3d6bd5a9d0e2f6a89041e58c338da49b.png平分17191f2bac1231b6549b7862e5426cf5.png,若5d79a095a52906e0fcd16e7b9f796a32.png1eb89fe595099bbca0dc407b6d3ae141.png9ec9fbbb6ecde835b304d989819b55dc.png2ed0934fee6ea0100d631fe2e0036ec5.png,则1849b5341383d7b153da25ce6f2b6c66.png(    )

A. cb32a911ff09264b5f6fc178d4febe2e.png   B. 854cc7dbd2adeeb69d491077ba06244f.png  C. b4ddf32a288155ede7b8d48566039d2a.png   D. e821dd10335ef74266834002da29bd7d.png

【答案】1d1f30caf2cba422dbd9264dbb3ff4df.png

【变式3】如图,82a82782f047acf35a862b60c3d9b017.png为平行四边形dd927e93770955621f4894d516fe3c8a.pngb25a634d96904ba50db9a972a55980ed.png上一点,且0ef3ed16c59afdb8abda6281c3e4bd65.png,设ca7f98dc0f7ed43ce01f57f5f9019d24.pngb4b79e34852d835568b8ab47964a6534.png,若03676d3f535ac6391f0aeb638fb0b45a.png6487800f66ca6fd0fd8500bc93f2cf5b.png,求a38f797c7d19c7987225fd76c65647fa.png的值.                             

   39c126caad12c8c401ec534f017e788c.png

【解析】84e5c0a89cf3af02a33b1f4f82cbad3a.png            ①

d86b27e5c973146187c301846ffd7f3c.png

c92af24bb107083692372688775c56c6.png,∴964e1b8ecb92b1882c40b482d6364361.png       ②

由①②解得276af7b410fde0ccccdae1236e55278d.png.

【变式4】若40324d6906919bff9089c49f258d5102.png是不共线的任意三点,则以下各式中成立的是(    )

A.6ddd4254f1bb4e37f4e2cc1b9f47c730.pngB.60e689bdd735e8dc310dd100352c4074.pngC.63b5e28fa90ae94dfec062e875733dc7.pngD.65f9a4e2fa174f1a05887a24ffc14a37.png

【答案】B

【变式5】已知6c9a80553e00fa7b33a4b100d9084fc0.png88b1b3a44452b0b92587f42c271edf4e.png所在平面内一点,d5f2df9c4b73b23f36c9a4749a36e3b2.pngc3364bec6ddebec132e2fd3c43e097ee.png边中点,且93cc3da5f0315c24e5a638987ad85847.png,那么(  )

A.250b5b8ad413b03fd0f88373ac0c883b.pngB.6bf1a8e9d57013895f7bf6a55fcdfafd.pngC.d901c6abe686ca2b4f4c2c92bc56c235.pngD.9e63459697be22941085cee91dd773c1.png

【答案】A

【解析】因为d5f2df9c4b73b23f36c9a4749a36e3b2.pngc3364bec6ddebec132e2fd3c43e097ee.png边中点,所以由平行四边形法则可知:7d4b256507e4e083d6a3150f91301b47.png

f154740b4909d1b90ed0bdba3f689e82.png,所以b116e2002d04f5ae7d922f78cc5bea19.png.

例3.设两个非零向量d8746ff85a93d7100cdbb5366db2d6d2.png不共线,

(1)若23d5cbbbc3644900f1e8e364af4cf392.png求证:1d7dc1e157a67805d0624397f2133ad3.png59db1b460f8c97ec88b3bf3c52364eb4.png0699698271cfa0c16ad03b7ee0c0d1d8.png三点共线.

(2)试确定实数a38f797c7d19c7987225fd76c65647fa.png,使71f2efb1e2103b3342f44c6f3356fa96.png58da88d9edc4891a5efda3f38e6a59d2.png共线.

【解析】(1)证明:4027511ef74211713560c0bbf5363468.png

f67fa62128c9cffc5fc0983a0f2653db.png

0fb2d9733f2c703c3d90722eaa3cbe0a.png共线,

e154ab01336f7883c2de92325ef1e8eb.png它们有公共点59db1b460f8c97ec88b3bf3c52364eb4.pnge77bf15c21b7f9407b7d6f7acd5dfef0.png1d7dc1e157a67805d0624397f2133ad3.png59db1b460f8c97ec88b3bf3c52364eb4.png0699698271cfa0c16ad03b7ee0c0d1d8.png三点共线.

(2)4824671c965bb061ccf047c4e93b7c0b.png58da88d9edc4891a5efda3f38e6a59d2.png共线,e77bf15c21b7f9407b7d6f7acd5dfef0.png存在实数0a1c340c3d003e5a7b6e1e622c5e7645.png,使fd216c31126de093a29c68bdb4d25a15.png

83b45f19dbe4d2ac39069c95dbbd8851.png

ea751db5d28f537932dca8ef41c072ed.png是不共线的两个非零向量,

b3ab0a9df3858c7f41e686ff984de403.png

9fc57041338bca09f3444202cef3ea77.png.

【总结升华】

①证明三点共线问题,可以用向量共线来解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得到三点共线.

②向量共线的充要条件中要注意当两向量共线时,通常只有非零向量才能表示与之共线的其他向量,要注意待定系数与方程思想的运用.

举一反三:

【变式1】已知平面内有一点P及一个△ABC,若15c36c6ac2690e4ae7ed98fff06cbec2.png,则(    )

A.点P在△ABC外部    B.点P在线段AB上

C.点P在线段BC上     D.点P在线段AC上

【答案】D

【解析】∵15c36c6ac2690e4ae7ed98fff06cbec2.png,∴9ac915d9fc318c5f013b158e4cf6e627.png,即2f2c0c96079348396d9b83c0ca3180ed.png

5f95c1095f8fd1a3419a7504b1e368dd.pngdd903429d096970bb74b6e72847342aa.png,∴点P在线段AC上.

【变式2】若e1e1a099be13eab457270befcc12a403.png1fd7885d79d99f1f8e0a8ca459ece6b4.png是两个不共线的向量,b5f09d472a2b489c47de215a74f79f93.pngee6d4713b84cd7a470ab1cb6a2074b8f.png,a07e696740518ec0292027c908503cc8.pngdf5691728ece031c42621f14936f417e.png,已知A、C、D三点共线,求实数a38f797c7d19c7987225fd76c65647fa.png的值.

【答案】b562f7590a83a7b802d16a442b5dfdbf.png

【解析】0a6c0854b9526c941df9dce6c74dbb5c.png15fd1cffc8af37d7ff94d0ae17f72131.pngdf5691728ece031c42621f14936f417e.png,

e154ab01336f7883c2de92325ef1e8eb.pngA,C,D三点共线,cb828c7a2e66203058a3a909aa5c61ec.png共线,

ba6d4782aebd63c405123ebc0cc3cc03.png,0a1c340c3d003e5a7b6e1e622c5e7645.png不为零,

9c91f6299cdf10702f4c192b79b6454f.pngb0b52edcb4e26ea61709c67d57a316ef.png,

a95383dd5597f664d15e2e11e201417d.png    ∴b562f7590a83a7b802d16a442b5dfdbf.png

【变式3】已知向量e1e1a099be13eab457270befcc12a403.png1fd7885d79d99f1f8e0a8ca459ece6b4.png不共线,6850b563be26a11ce6af340425832840.png,如果e9552e39d5f2a5dea24aec90cd374a23.png788234e3334c5421ccdae5e18d68c531.png,那么(    )

A.k=1且e9552e39d5f2a5dea24aec90cd374a23.png788234e3334c5421ccdae5e18d68c531.png同向      B.k=1且e9552e39d5f2a5dea24aec90cd374a23.png788234e3334c5421ccdae5e18d68c531.png反向

C.k=―1且e9552e39d5f2a5dea24aec90cd374a23.png788234e3334c5421ccdae5e18d68c531.png同向    D.k=―1且e9552e39d5f2a5dea24aec90cd374a23.png788234e3334c5421ccdae5e18d68c531.png反向

【答案】D 

【解析】∵e9552e39d5f2a5dea24aec90cd374a23.png788234e3334c5421ccdae5e18d68c531.pnge1e1a099be13eab457270befcc12a403.png1fd7885d79d99f1f8e0a8ca459ece6b4.png不共线,∴存在唯一实数0a1c340c3d003e5a7b6e1e622c5e7645.png使e9552e39d5f2a5dea24aec90cd374a23.png=4767558c792e0dbac4b04930488eeffb.png

0fabdc239919ae0c235d1cf633642e36.pngb04cd4c01229f19559bf3a0fd196274e.png,∴9bd1568d438f5daaabe3c52fcc045d9a.png,故选D.

【高清课堂:平面向量的概念与线性运算401193例2】

【变式4】已知向量0d62e75530751f0bb6b13f3dd9496b36.png,且1563cb7e20a1f23b9d957c140379bad6.png则一定共线的(  )

(A) A、B、D            (B)  A、B、C  

(C)  B、C、D            (D)A、C、D

【答案】A 

类型三、平面向量的基本定理、坐标表示及综合应用

例4.设向量0294085f5dd636d11f3346361d8fac14.png3b79656edc5126a3303c4ca8a65d1891.png0f6d691fe4f20ae48b6bbf9325fb20e1.png2e7c8fc188aba82b0e9cd05eb78567d6.pngf8e3d1a6116631076d41fa6b980adfd7.png,求使66dbc79fc5bad11ca5d7bd8725304e5d.png成立的实数d3a96228d357d131c748f24af1530654.png083883522d7b13d9310eec9c37db7d80.png的值.

【解析】由题知:80016de2328ab1b9b659f347a0ed5797.png62df9a25ad147da9b82cef7977bebba9.png

      ∵f8e3d1a6116631076d41fa6b980adfd7.png,∴ 6f9be03f226d43e0b0f7f2eddf3164d2.png,解得ba0218305a52495d0a703e6e4bbba958.png

c80f3d6b134d62c59586ac9d1679179d.pngc2c1a5c109bb515b93a6867ee11bcd17.png

66dbc79fc5bad11ca5d7bd8725304e5d.png 得5939a23febd64b4fbb81049318cbe0fe.png

59416593985989d144de98531b48cb9b.png,  即1c777c4ede8da861a16ba50264ecdd71.png.

【总结升华】考查向量的坐标运算及平行垂直的坐标表示是考试命题的主要方式之一,准备掌握公式,灵活运用.

举一反三:

【变式1】已知38fff535d16659c31058cf4d395551a2.pngbe29bf79d558eb36330a53466b0d9b96.png,若d30049dcc1b5f0e93ca09773fb447ef2.png,7c83a37ffdf914e8637fc5dfe06e4960.png是共线向量,求实数388acea8855032a33820bc07a0db3af6.png的值;

【解析】由已知有: a90a36b36eaf1d0e7125e14f0b6c7320.png46710298d213975aa85d45560c80bf1a.png

b7aa50335cdc999a1f1331265cbc196f.png,

15cfb6b5dcfc8d703b2ae068a4d3ba17.png,解得cd651925c76e987546ffd9400d33a88a.png.

【变式2】设向量a=(1,2),b=(2,3)。若向量19a8dc2a8f452dff95a9908d73c802e7.png与向量c=(―4,―7)共线,则λ=________.

【答案】2

【解析】4c9c36f55b1d0a38fa09d7907f511d80.png, ∵0d507b283bb975c96d448f22acc16d06.png,∴9995e8e4c30319717a9448188962dc6c.png.  故填2.

37bd1970454f5e27855e25095af34303.png【变式3】如图,在△ABC中,AD⊥AB,213db439053a6002df9d7b26540d3f5e.png62ef96090dc480e2c0d428e02c5a5ea0.png

4e4a2d643e6a4d694e2838727d88c4ad.png________.

【答案】1bf6a112975401fe8fecef09b893b958.png

5296cec29f678f67e1a0615100d754d9.png【解析】 建系如图所示:

令B(xB,0),C(xC,yC),D(0,1),

fb28551c477f1a5ebdd3b446c5769818.pngda9a355da13fa4b5848a059c2f0ac58c.png213db439053a6002df9d7b26540d3f5e.png

f8423f0c5ec5d7c06e2eca1c5525749e.png,∴49f62f9d3fe25d40b7710a6618e554d2.png

92304c807ee2b0788024c705fa461e2e.png87efe8c057dc9646b4f77c0e8b36d093.png,则ae1d9689f2ba7adf54757b1e1aa121f7.png.

【变式4】若平面向量e1e1a099be13eab457270befcc12a403.png1fd7885d79d99f1f8e0a8ca459ece6b4.png满足f8493200d106952b5232818bf602b274.png,81f047d131b07a060634e127536557d1.png平行于x轴,98db7298f393204ac1a6fe44cb66e4bc.png,则e1e1a099be13eab457270befcc12a403.png=________.

【答案】(―1,1)或(―3,1)

【解析】设e1e1a099be13eab457270befcc12a403.png=(x,y),则81f047d131b07a060634e127536557d1.png=(x+2,y―1),

由题意得efaafe7e8cb6b84841a0212a85e86add.pngc00b8f71efdd70bbf7a168d7e2fc65d0.png.

e1e1a099be13eab457270befcc12a403.png=(―1,1)或(―3,1).

【高清课堂:平面向量的概念与线性运算401193例3】

【变式5】若直线6c795379538770db549e72cbd2946ee0.png按向量a68a001e4b76c15f93a74ed4694131c3.png平移后与圆e97c32489198b149fe08247fd9149bda.png相切,则c的值为(       )

A.8或-2   B.6或-4   C.4或-6    D.2或-8

【答案】A

例5.A,B,C是不共线三点,点O是A,B,C确定平面内一点,若96f0860ff2268e2eb4808a8922e03a88.png取最小值时,O是△ABC的(    )

A.重心    B.垂心    C.内心    D.外心

【答案】A

【解析】设O(x,y),A(x1,y1),B(x2,y2),C(x3,y3)

09b834b433b349b13dab348f0a83c662.png

    edf5a67193273bac316612d47ecec3e2.png

    2d8b262b734d08fec6a0d4b5e9afa828.png8f7b530330f0cda675fe456edf89317d.png

    a35cd1ee4a47850787a6f0f64144bafb.png

则当5281846db327a3809849aa5742e74703.png7f5c35156f938b6c53e2bb6c99a289c7.png时,48d3417928b51403d7f56dc2106c5e26.png,故选A.

【总结升华】关注三角形的“心”,包括三角形的重心、垂心、外心、内心和旁心.

举一反三:

【变式1】在fc36a23bed0e77230438d117881ae668.png中,点6c9a80553e00fa7b33a4b100d9084fc0.png满足09ef10146d01b62fd9eb32c7c37b7477.png,则点6c9a80553e00fa7b33a4b100d9084fc0.pngfc36a23bed0e77230438d117881ae668.png的(     )上

A.角平分线      B. 中线       C.中垂线        D. 高

【答案】D;

【解析】∵09ef10146d01b62fd9eb32c7c37b7477.png,∴6ccfee50d41a7d23348a949d7c13941e.png

bdac178f8a0c45d2b874835b0dd11761.png,∴d3168f646db0ea3ac690d61acdc4615c.png

af9637670ccb6f81f771b5a997dde12b.png,所以点6c9a80553e00fa7b33a4b100d9084fc0.pngfc36a23bed0e77230438d117881ae668.png的高上.

【变式2】平面△ABC及一点O满足e5d71c3ebcf627db19aedfa665a6d4d8.png56a350abd8ee2100ccf723e1e7e8e376.png,则点O是△ABC的(    )

A.重心    B.垂心    C.内心    D.外心

【答案】选D.

【解析】由e5d71c3ebcf627db19aedfa665a6d4d8.pngfb79053519de213dd1e319abef9d789c.png

bef55597c462cc0b979313143dd77a9b.png  即77908905c9fad4dac72175f3acd86667.png

08804b264d7055ffe708d5055cb210ad.png

同理8bc72044482179d91ef7f93485c77f53.png,故选D.

【变式3】平面内fc36a23bed0e77230438d117881ae668.png及一点O满足f774f466a5bf800282de2f3d1e1acd05.png50a2bc226fca58f7263baed93256c7c0.png,则点O是fc36a23bed0e77230438d117881ae668.png的(     )

(A)重心        (B)垂心       (C)内心         (D)外心

【答案】C

【解析】对于f774f466a5bf800282de2f3d1e1acd05.png的理解,其中3e3b709c2324f044201886db50c569d7.png,即为b5f09d472a2b489c47de215a74f79f93.png方向上的单位向量.

【变式4】在fc36a23bed0e77230438d117881ae668.png中,点6c9a80553e00fa7b33a4b100d9084fc0.png满足a7b3e87b35e91f06b554f8ef285d4f5e.png,则点6c9a80553e00fa7b33a4b100d9084fc0.pngfc36a23bed0e77230438d117881ae668.png的(     )上

A.角平分线      B. 中线       C.中垂线        D. 高

【答案】B;

【解析】如图,以OB、OC为邻边作平行四边形89e9b37ddd6f8787d65e7ad50f9895c4.png

c51bab445803c94a4f6a5713c27ab9a8.png

则点cbdd23e8da70a10477d43cf64ca2af4d.png6c9a80553e00fa7b33a4b100d9084fc0.pngd5f2df9c4b73b23f36c9a4749a36e3b2.png三点共线,而且在平行四边形89e9b37ddd6f8787d65e7ad50f9895c4.png中,点82a82782f047acf35a862b60c3d9b017.pngc3364bec6ddebec132e2fd3c43e097ee.png的中点,

所以2644a05859d56aa26b2b40695c2539dd.pngfc36a23bed0e77230438d117881ae668.png的中线

dd885fc9a0e63cf3b09542ace742dab8.png

巩固练习】

1、选择题

c664064e8a146a408f72c6df18010b86.png1. 如图所示,在平行四边形ABCD中,下列结论中错误的是(    )

A.9551f9c516f37c4b998a039ddc5578c7.png        B.60d77315ee6116707e298ac6aa52418d.png

C.7ccb97dbd8a7b2607faea009dbc3e030.png    D.a1bbcf98c4254ece7489db96f5a14943.png

2. 设平面向量18d326838548bbbdd6fbd2509c0987db.png,则fe2b1c329d94d8fc61f9ec824303ad4b.png(    )

A.ac2b1bb789e6f183c3c8584969e802c4.pngB.e5cec7366b4fc4e9302d5b973cfc7676.pngC.2c5e555a1f45a7ffe4283342076d3182.pngD.2773ceca10e51d9d78ff25ef02d76f2b.png

3. 在平行四边形ABCD中,AC与BD交于点O,E是线段OD的中点,AE的延长线与CD交于点F。若6794e26af257f1faf9a31c2367864fe1.pnga2e77234a6d4d40a740112ac9049307b.png,则5f4f456ee1f8092ef72fbef5999e8937.png(    )

A.c4d104bd046effe28399a7aa8a53bf75.png    B.a46757608b273fd48063376d7b3d1b97.png    C.57eb9f1fae07185ee5c711bed8549542.png    D.e3b1551cff2f7f5f7de9b6ff7b6724d0.png

4.  设向量267c1a5b092d8ea4983117bc3d635a69.png6f8991d19d3df8bab8f7cc686ae9787a.png,且a∥b,则锐角d2189ea68b1f9ee632662f621ce2be04.png为(    )

A.3a84226ba500190165d4e9f38312a18b.png    B.3724bf8349c84f57714e2ffeec94d3fa.png    C.cf70771a1be17752649564d0f419fcb2.png    D.ab5b29d91a86b0330e648ea8b6f62ed4.png

5. 设D、E、F分别是△ABC的三边BC、CA、AB上的点,且ede3f763d778bbd440b7af13a42ee730.png7cff545c9ccd6a4c1f285231082dee72.png

9d2e2cc2a3252bc17fde49f00b3aa2d8.png6acf50e55a10bf339e047a263ceb75d2.png229126c85cfd71a86e59fdf027f5fce4.png(      )

A.反向平行  B.同向平行     C.互相垂直D.既不平行也不垂直

6.设4aa358d2efaca2e309c71177ab71ff4c.png03db09dce3c9c7f8065b203de3932b6a.pngd001f72e4a1b3f48a8706aea34d8349e.pngd001f72e4a1b3f48a8706aea34d8349e.png是平面直角坐标系中两两不同的四点,若c22f5a17ff5ba5ec43eb955a2b83f3a8.pngdc1ec03b36270b0b4c1840408b241cc6.png,且91733a77bc873028aeda2c3f10bdf2e4.png,则称d001f72e4a1b3f48a8706aea34d8349e.png106c684d4f7afb0ed76515e22ae3833f.png调和分割4aa358d2efaca2e309c71177ab71ff4c.png03db09dce3c9c7f8065b203de3932b6a.png.已知平面上的点C,D调和分割点A,B,则下面说法正确的是(    )

A.C可能是线段AB的中点

B.D可能是线段AB的中点

C.C,D可能同时在线段AB上

D.C,D不可能同时在线段AB的延长线上

7. O是平面上一定点,A、B、C是平面上不共线的三个点,动点P满足0af0c5d4be926d8000d488c8e7737aff.png652118b48420c93ff7eee23583551c80.png,则P的轨迹一定通过△ABC的(    )

A.外心    B.垂心    C.内心    D.重心

2、填空题  

8.若ABCD为正方形,E是CD的中点,且b34b2dd2fff91ff82148265945e21a9f.pnga97b8c35dfa5bdeda3eb40c6368dc7c0.png,则cf1f90f05daef22b19adecb3539875fd.png=________.

9.已知a5e126affe3a43d790b886edc3fa7292.png,若平面内三点Ace810f69c3b2e1fbee2b362617695be2.png,Ba0b4e34c576237a47b9de0a0ab42c73d.png,C56258a1809a4678f2d580c3ce1a96411.png共线,则891528625960032a6f81ae46ca54d2c9.png=________

10. 已知直线x+y=a与圆x2+y2=4交于A、B两点,且0c849f4ac75ae490e0a71358c5ef9037.png,其中O为坐标原点,则实数a的值为________.

11. 在四边形ABCD中,19b496a455a4bae870cdff4688523042.pnga0d23a7bb7066968e41928fb13d4a283.png,则四边形ABCD的面积为________。

三、解答题

12. 如图,在平行四边形b346b6bafc08a341f7c939f91b6c8d9b.png中,已知7f2b666ff80bdc00da9c6519987c25a1.png,求证:B、E、F三点共线.

78a1e70ad2912a7a2a90b7c09fd872b1.png

13.已知△ABC中,A(7,8),B(3,5),C(4,3),M、N分别是AB、AC的中点,D是BC的中点,MN与AD交于F.   求182b3f10981de8f661a263375eca7eb1.png.

14.已知点e3a81f0dd005c71f81288070bd100162.png),5aea5157343305e0b8c01692ae9dc731.png,其中eed0363568b1547641f3a50e1c8d049f.png,若向量a201a4ab948d02519d0c79a9875d9aed.png,求a05dbb80f3e40b721d31a3d49e346b7c.png的值.

15.已知O为坐标原点,A(0,2),B(4,6),b3ba82ca2f2095b25482ee69e2c63aba.png.

(1)求点M在第二或第三象限的充要条件;

(2)求证:当t1=1时,不论t2为何实数,A、B、M三点都共线;

(3)若t1=a2,求当6fd52235b4653218ea242f5437117115.png且△ABM的面积为12时a的值.

【参考答案与解析】

1.【答案】C

【解析】  A显然正确,由平行四边形法则知B正确.  64f9469d382cade764cda7adbbc3a3c9.png,故C错误.

D中480f2d284dbb28b1063691eaa0725a47.png,D也正确.

2.【答案】C

【解析】∵18d326838548bbbdd6fbd2509c0987db.png 

3d3ecf09e1e808f3900caa63569943af.pngf6c39a7327bd50c6da8706634253615b.png

3.【答案】D

【解析】651c1850f84c090e224b0387d3211b9f.png

4.【答案】B

【解析】由9716334e2b476b33baabbcc5b9a0c7d0.png得,86246a7aaee5a270ff0b04729499a0fd.png,∴aba26a18fb88534cd20db2424d457bb9.png故选B.

5.【答案】A

【解析】依据题意画出符合题意的图形(如图),

0a2262131530eb1084943f9ae5b7f50c.png

8356fdd47f861a49cbae8723837ffd1d.png300c691e93d1346176d3a535ea261014.png8821d8372b43293c7837ac0e002f13d9.png

以上三式相加得:4a82cfe8038a2b8cb98108f813fe6acb.png所以选A.

6.【答案】D

【解析】由题意得49ecc257ac0f63685f8641e0e95c3fc8.pngbf3f12c93a39e54b798b0679612d631c.png,且91733a77bc873028aeda2c3f10bdf2e4.png

若C,D都在AB的延长线上,则e748e361c9337be2b798bc74e4b42ca5.png6c106c2db0dc52f9c190b7a3ad5c6197.png0af4f90aa873e1dc60c7a6494c7a50e8.png91733a77bc873028aeda2c3f10bdf2e4.png矛盾,故选D.

7.【答案】D

【解析】  ∵0af0c5d4be926d8000d488c8e7737aff.png,∴0473e1fb478d5e0122408e1b2ef5ff77.png652118b48420c93ff7eee23583551c80.png

0d081e6204205ff1065db3b0ae1150d5.png,∴P在BC边的中线上。故P的轨迹通过△ABC的重心. 故选D.

8.【答案】31d4b469eb0f6c2ceceef8e70ef9adfc.png

【解析】04297368b5d2508ec96266240269c1b7.png.

9.【答案】575f258d54cf9efd55bd6622ef8dd3dd.png

【解析】∵f22111ca23739e8089db7f5b7faa095b.pnga548017419772bf4b2cf5d1a37c51068.png,∴8181749a2fcd4c5e22a21cbf17ed4b05.png

a5e126affe3a43d790b886edc3fa7292.png,∴8fe7a0c527c672c95958771cb0f97952.png,解得dd7b28b1fa729708b063fba7fc7052e9.png.

fea3487d78f6cb8d671dcf9b25771132.png10.【答案】±2 

【解析】如图所示,以OA、OB为边作平行四边形OACB,

则由0c849f4ac75ae490e0a71358c5ef9037.png得,平行四边形OACB是矩形,

bb7bf10a6280eed649fe83b43bf8e988.png,由图象得,直线y=-x+a在y轴上的截距为±2.

11.【答案】1bf6a112975401fe8fecef09b893b958.png

【解析】由19b496a455a4bae870cdff4688523042.png1ed8436822988303ee70ccaa22e2acf2.png.

a0d23a7bb7066968e41928fb13d4a283.png知四边形ABCD为菱形,且ce6b9166ef98933125a35f9b7e2adb0c.png

又∵57c7640d817f07a0a0720cbf0fcc61e7.png

∴∠ABC=60°,769bfa3af1f11f6c2342a089db25f897.png,∴∠BAD=120°.

2f32d9e43704101073ab89ac157e9072.png,∴e6c059e38fff85afec86993f1e357336.png.

12. 【解析】

35ad22847a34aa4222f246944b7890c4.pnga74f6fddaed8505efe7391418353e610.png

9d38a882045ccc65157ffb7de4af44ed.png d1206f42c5d04e75d9da2a815a3b55b7.png

bcb575f602ee98de306cb3e3d319bf91.png共线,且有公共的端点E,

∴B、F、E三点共线.

c21a196158474dc30a99249265654400.png13.【解析】作图,如图所示,

∵A(7,8),B(3,5),C(4,3),

0190b33a8b241ee324d2b98f04d2ee65.png5d6b5b0038b839043325116b7dfa9515.png.

∵D是BC的中点,

261a72ecc1ddf5a49de95ebb08204ea8.png.

又∵M、N分别为AB、AC的中点,∴F为AD的中点,

360757863d4f17ffd04a8d20bd14e5ca.png.

14.【解析】由已知得:83e7e5ce20a29294945fea41468823bf.png

解得f082cecaf95dedca1d074a00b2797865.pngdf8444e2898d8ecb3564677a3b3cfb63.png,

5ca6889e20e7ae2d15e8a11f773ac2c7.png,∴72d73cee39377a0cbff4b04086be4690.png909c597b7ffdfd1f756f47967296412b.png.

15. 【解析】(1)c6f0e630b0c9553412a9fbe1825ee8af.png.

当点M在第二或第三象限时,有8224cb3cf0a34bf1cdbe6836dd0d5989.png

故所求的充要条件为t2<0且t1+2t2≠0.

(2)证明:当t1=1时,由(1)知206ac82f5f68e8a659876ea028a1a7b9.png.

0a6f82d2ebe2df432abe022e56cc70c2.pngf4352e9225fa11fb54cb52f235648e7b.png

∴A、B、M三点共线.

(3)当t1=a2时,f8e986f1c1325a8a3d0be37a14f3d345.png.

3eeba9b490b81db1cd8d78af51d28eaf.png6fd52235b4653218ea242f5437117115.png

∴4t2×4+(4t2+2a2)×4=0,

9acd01ba36c2b3cfe8392e418d4c1c4e.png,故f6cd5595cb9747baf1e84fdeecd1e4e0.png.

c77e1829aa781b45a4e829b7484dd96a.png,点M到直线AB:x-y+2=0的距离d8e028af70c0a22c7b139b445312a090.png.

∵S△ABM=12

7704dc633dd354204a034bc90f4e3fda.png,解得a=±2,

故所求a的值为±2.

来源:学科网

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值