题目:
Given a 2D binary matrix filled with 0's and 1's, find the largest square containing only 1's and return its area.
For example, given the following matrix:
1 0 1 0 0
1 0 1 1 1
1 1 1 1 1
1 0 0 1 0
Return 4.
题意及分析:给出一个只包含‘0’,‘1’字符组成的矩阵,求一个子矩阵全是1时,最多有多少个1,其中子矩阵长和宽相等。本题可以用动态规划的方法求解,首先用一个二维数组res[][]保存到一个点能得到最大子矩阵的长度,我们来看对于矩阵中的任意一点matrix[i][j](0
(1)它的左上角点的res[i-1][j-1]==0,那么对于到当前点有两种情况:
a.当前点为matrix[i][j]=='0',那么res[i][j]=0
b.当前点matrix[i][j]=='1',则res[i][j]=1;
(2)它的左上角点的res[i-1][j-1]==a(a>0),那对于当前点有:
a.当前点为matrix[i][j]=='0',那么res[i][j]=0
b.当前点matrix[i][j]=='1',那么对当前点所在的列和行分别向前推进a格,如果都为1,那么res[i][j]=res[i-1][j-1]+1,否则res[i][j]得值只能取当前点到先为0 的点之间的差,具体看代码
对第一行和第一列进行单独处理,然后遍历剩余元素即可
代码:
public class Solution {
public int maximalSquare(char[][] matrix) {
int row=matrix.length;//行数
if(row==0)
return 0;
int col=matrix[0].length;
if(col==0) return 0;
int[][] res=new int[row][col];//记录到矩阵当前点的最大1方形的长度
int max=Integer.MIN_VALUE; //记录当前最大的长度
//对第一行和第一列的元素先单独处理
for(int i=0;i
if(matrix[i][0]=='0'){
res[i][0]=0;
}
else{
res[i][0]=1;
}
max=Math.max(max, res[i][0]);
}
for(int i=0;i
if(matrix[0][i]=='0'){
res[0][i]=0;
}
else{
res[0][i]=1;
}
max=Math.max(max, res[0][i]);
}
for(int i=1;i
for(int j=1;j
int a=res[i-1][j-1];
if(a==0){
if(matrix[i][j]=='0')
res[i][j]=0;
else
res[i][j]=1;
}else{
if(matrix[i][j]=='0')
res[i][j]=0;
else{//当前点为1
boolean isSuccess=true;//判断是否能扩展到当前点,能就加一
int rowIndex=i;
int colIndex=j;
for(int k=i-1;k>=i-a;k--){
if(matrix[k][j]=='0'){
isSuccess=false;
rowIndex=i-k;
break;
}
}
for(int k=j-1;k>=j-a;k--){
if(matrix[i][k]=='0'){
isSuccess=false;
colIndex=j-k;
break;
}
}
if(isSuccess)
res[i][j]=a+1;
else{
res[i][j]=Math.min(rowIndex, colIndex);
}
}
}
max=Math.max(max, res[i][j]);
}
}
return max*max;
}
}