python 状态空间模型_SSM: 状态空间模型的贝叶斯学习与推理

该包提供了快速灵活的状态空间模型实现,支持包括隐藏马尔可夫模型(HMM)、自回归HMM、输入输出HMM、隐藏半马尔可夫模型(HSMM)、线性动力系统(LDS)等。支持多种观测模型,如高斯、学生t分布等。提供EM和SGD方法进行HMM推断,SLDS则采用SVI。示例中展示了如何从HMM中采样和拟合模型。
摘要由CSDN通过智能技术生成

SSM: Bayesian learning and inference for state space models

This package has fast and flexible code for simulating, learning, and performing inference in a variety of state space models. Currently, it supports:

Hidden Markov Models (HMM)

Auto-regressive HMMs (ARHMM)

Input-output HMMs (IOHMM)

Hidden Semi-Markov Models (HSMM)

Linear Dynamical Systems (LDS)

Switching Linear Dynamical Systems (SLDS)

Recurrent SLDS (rSLDS)

Hierarchical extensions of the above

Partial observations and missing data

We support the following observation models:

Gaussian

Student's t

Bernoulli

Poisson

Categorical

Von Mises

HMM inference is done with either expectation maximization (EM) or stochastic gradient descent (SGD). For SLDS, we use stochastic variational inferenc

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值