状态空间模型中参数的贝叶斯估计

状态空间模型中参数的贝叶斯估计

(参数估计所有内容)

对于模型中的未知参数 θ ∈ R d \bm{\mathbb{\theta \in R^d}} θRd,贝叶斯方法通常将其建模为先验分布已知的随机变量,且其先验分布表示为 p ( θ ) \bm{p(\theta)} p(θ)。参数全部已知时,系统状态空间模型可表示为:
在这里插入图片描述可由贝叶斯公式直接计算当前时刻的完全先验分布,计算式为:
在这里插入图片描述式中,相关分布的计算式为:
在这里插入图片描述
若只需要估计参数向量 θ \bm{\theta} θ,贝叶斯方法通常对该状态量求积分,得到参数的边缘后验分布:
在这里插入图片描述但是这个公式的计算维度过大,尤其是在获取的量测量之后。

边缘后验分布的表达式为:
在这里插入图片描述该式子直接给出了计算上述分布的递归算法。在计算过程中,通常可以假设先验分布 p ( θ ) \bm{p(\theta)} p(θ),故其获取并不苦难。难点在于边缘似然分布 p ( y 1 : T ∣ θ ) \bm{p(y_{1:T}|\theta)} p(y1:Tθ) 的计算

可对边缘似然分布进行状态分解,进而可以进行递归计算:
在这里插入图片描述上式所涉及的累乘因式表达式为:
在这里插入图片描述式中, p ( y k ∣ x k , θ ) , p ( x k ∣ y 1 : k − 1 , θ ) \bm{p(y_k|x_k,\theta), p(x_k|y_{1:k-1},\theta)} p(ykxk,θ),p(xky1:k1,θ) 分别为量测模型和预测分布,二者的表达式为:
在这里插入图片描述

在参数估计中,通常还呦另一种更为方便的计算方法,
即:非归一化负对数后验分布或能量函,来代替边缘似然估计概率或边缘后验分布。

能量函数:
在这里插入图片描述且有:
在这里插入图片描述
能量函数的递归形式:
1). 计算
在这里插入图片描述2). 对每一步 k = 1 , 2 , ⋅ ⋅ ⋅ , T \bm{k=1,2,\cdot\cdot\cdot,T} k=1,2,,T,计算:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值