状态空间模型中参数的贝叶斯估计
(参数估计所有内容)
对于模型中的未知参数
θ
∈
R
d
\bm{\mathbb{\theta \in R^d}}
θ∈Rd,贝叶斯方法通常将其建模为先验分布已知的随机变量,且其先验分布表示为
p
(
θ
)
\bm{p(\theta)}
p(θ)。参数全部已知时,系统状态空间模型可表示为:
可由贝叶斯公式直接计算当前时刻的完全先验分布,计算式为:
式中,相关分布的计算式为:
若只需要估计参数向量
θ
\bm{\theta}
θ,贝叶斯方法通常对该状态量求积分,得到参数的边缘后验分布:
但是这个公式的计算维度过大,尤其是在获取的量测量之后。
边缘后验分布的表达式为:
该式子直接给出了计算上述分布的递归算法。在计算过程中,通常可以假设先验分布
p
(
θ
)
\bm{p(\theta)}
p(θ),故其获取并不苦难。难点在于边缘似然分布
p
(
y
1
:
T
∣
θ
)
\bm{p(y_{1:T}|\theta)}
p(y1:T∣θ) 的计算。
可对边缘似然分布进行状态分解,进而可以进行递归计算:
上式所涉及的累乘因式表达式为:
式中,
p
(
y
k
∣
x
k
,
θ
)
,
p
(
x
k
∣
y
1
:
k
−
1
,
θ
)
\bm{p(y_k|x_k,\theta), p(x_k|y_{1:k-1},\theta)}
p(yk∣xk,θ),p(xk∣y1:k−1,θ) 分别为量测模型和预测分布,二者的表达式为:
在参数估计中,通常还呦另一种更为方便的计算方法,
即:非归一化负对数后验分布或能量函,来代替边缘似然估计概率或边缘后验分布。
能量函数:
且有:
能量函数的递归形式:
1). 计算
2). 对每一步
k
=
1
,
2
,
⋅
⋅
⋅
,
T
\bm{k=1,2,\cdot\cdot\cdot,T}
k=1,2,⋅⋅⋅,T,计算: