python编程标准化_pandas 对每一列数据进行标准化的方法

本文介绍了两种在Python中使用pandas库对DataFrame的每一列数据进行标准化的方法,包括利用apply函数和直接计算的方式。通过示例代码展示了如何进行标准化处理,并验证了结果的正确性。
摘要由CSDN通过智能技术生成

两种方式

>>> import numpy as np

>>> import pandas as pd

Backend TkAgg is interactive backend. Turning interactive mode on.

>>> np.random.seed(1)

>>> df_test = pd.DataFrame(np.random.randn(4,4)* 4 + 3)

>>> df_test

0 1 2 3

0 9.497381 0.552974 0.887313 -1.291874

1 6.461631 -6.206155 9.979247 -0.044828

2 4.276156 2.002518 8.848432 -5.240563

3 1.710331 1.463783 7.535078 -1.399565

>>> df_test_1 = df_test

>>> df_test.apply(lambda x: (x - np.min(x)) / (np.max(x) - np.min(x))) #方法一

0 1 2 3

0 1.000000 0.823413 0.000000 0.759986

1 0.610154 0.000000 1.000000 1.000000

2 0.329499 1.000000 0.875624 0.000000

3 0.000000 0.934370 0.731172 0.739260

>>> (df_test_1 - df_test_1.min()) / (df_test_1.max() - df_test_1.min())#方法二<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值