python应用于人工智能的代码_【python量化】人工智能技术在量化交易中应用的开源项目...

这个项目收集了包括机器学习,深度学习以及强化学习在内的一些用于股票预测的模型。其中深度学习模型包括:

LSTM

LSTM Bidirectional

LSTM 2-Path

GRU

GRU Bidirectional

GRU 2-Path

Vanilla

Vanilla Bidirectional

Vanilla 2-Path

LSTM Seq2seq

LSTM Bidirectional Seq2seq

LSTM Seq2seq VAE

GRU Seq2seq

GRU Bidirectional Seq2seq

GRU Seq2seq VAE

Attention-is-all-you-Need

CNN-Seq2seq

Dilated-CNN-Seq2seq

强化学习以及智能体模型包括:

Turtle-trading agent

Moving-average agent

Signal rolling agent

Policy-gradient agent

Q-learning agent

Evolution-strategy agent

Double Q-learning agent

Recurrent Q-learning agent

Double Recurrent Q-learning agent

Duel Q-learning agent

Double Duel Q-learning agent

Duel Recurrent Q-learning agent

Double Duel Recurrent Q-learning agent

Actor-critic agent

Actor-critic Duel agent

Actor-critic Recurrent agent

Actor-critic Duel Recurrent agent

Curiosity Q-learning agent

Recurrent Curiosity Q-learning agent

Duel Curiosity Q-learning agent

Neuro-evolution agent

Neuro-evolution with Novelty search agent

ABCD strategy agent

并且该项目在github中获得了超过2.4k的star和1.1k的fork数量,除此之外,该开源项目也提供了一些常用的基准数据集,便于相关研究者进行实验和拓展。下图是该项目中的demo展示:

e22cd1f1-59c6-43ef-b867-db20dbaf6e2b.png

1d1a5ed4-29d3-4cec-bea3-95ae58e52135.png

github地址:https://github.com/huseinzol05/Stock-Prediction-Models

2

Tensorflow work for stock prediction

这个项目主要用到了Tensorflow进行一系列深度学习以及强化学习模型的实现并将它们应用于股价的预测当中。如通过CNN识别股价的上涨模式,通过MLP或者DQN对特征进行预测等。除此之外,该项目也提供了详细的说明文档对用到的特征,以及模型的构建进行了介绍:

7b279797-895e-448d-90ba-2aba9d7eba6b.png

ae4c3768-8946-493a-99f5-3f77c5cf01b9.png

699aca51-700e-4a93-b0d7-f8165a2163a7.pnggithud地址:https://github.com/kimber-chen/Tensorflow-for-stock-prediction

3

Reinforcement Learning for Stock Prediction

这个项目主要是通过强化学习来进行股价的预测,其中,强化学习用到了Q-learning,并将其应用于(短期)股票交易之中。该模型的训练和交易逻辑是使用n天的收盘价窗口来确定在给定时间采取的最佳行动是买入、卖出还是观望。结果证明,作为短期状态的表示,该模型不太擅长对长期趋势做出决策,但却非常擅长预测高峰和低谷。下面是该项目的一些结果展示:

592a5b66-aa10-4bdc-a934-33f336702fb5.png

57235bdf-2a62-4b11-85f8-159d24b3658a.png

c1c4719d-f5ee-46d0-9a42-466940943af6.png

github地址:https://github.com/llSourcell/Reinforcement_Learning_for_Stock_Prediction

4

US Stock Market Prediction by LSTM

LSTM是深度学习领域中处理时间序列数据的一个有效且常用的方法,近些年也有不少论文或者实践成果将LSTM应用于金融衍生品的价格预测当中。由于在传统的递归神经网络(RNN)中,存在一个所谓的梯度消失/爆炸的问题,这个问题来自于仅通过乘法来更新权值。为了解决这一问题,LSTM则考虑了另一种更新权值的方法,既采用乘法,也采用加法。在这项工作中,作者用了两种方法来做预测。一个是无状态LSTM模型,另一个是有状态LSTM模型。

97fd459f-97fb-49bd-9956-f92f56b279a1.png

github地址:https://github.com/christsaizyt/US-Stock-Market-Prediction-by-LSTM

5

stock-predict-by-RNN-LSTM

下面这个项目同样也是基于RNN以及LSTM实现的,并应用于高频股价的预测。具体的实现细节可以参考作者的论文:《High Frequenccy Trading Price Prediction using LSTM Recursive Neural Networks》。

ac0ffae3-2402-410a-9a85-9b3e69cf5c6b.png

github地址:https://github.com/blockchain99/stock-predict-by-RNN-LSTM

6

How-to-Predict-Stock-Prices-Easily-Demo

这个项目介绍了一些简单的例子,如通过LSTM来预测S&P在过去一段时间的收盘价,其中的代码主要是依赖keras以及tensorflow实现的。

4f1376bd-60ed-475e-a552-6abfee958d28.png

github地址:https://github.com/llSourcell/How-to-Predict-Stock-Prices-Easily-Demo

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值