这个项目收集了包括机器学习,深度学习以及强化学习在内的一些用于股票预测的模型。其中深度学习模型包括:
LSTM
LSTM Bidirectional
LSTM 2-Path
GRU
GRU Bidirectional
GRU 2-Path
Vanilla
Vanilla Bidirectional
Vanilla 2-Path
LSTM Seq2seq
LSTM Bidirectional Seq2seq
LSTM Seq2seq VAE
GRU Seq2seq
GRU Bidirectional Seq2seq
GRU Seq2seq VAE
Attention-is-all-you-Need
CNN-Seq2seq
Dilated-CNN-Seq2seq
强化学习以及智能体模型包括:
Turtle-trading agent
Moving-average agent
Signal rolling agent
Policy-gradient agent
Q-learning agent
Evolution-strategy agent
Double Q-learning agent
Recurrent Q-learning agent
Double Recurrent Q-learning agent
Duel Q-learning agent
Double Duel Q-learning agent
Duel Recurrent Q-learning agent
Double Duel Recurrent Q-learning agent
Actor-critic agent
Actor-critic Duel agent
Actor-critic Recurrent agent
Actor-critic Duel Recurrent agent
Curiosity Q-learning agent
Recurrent Curiosity Q-learning agent
Duel Curiosity Q-learning agent
Neuro-evolution agent
Neuro-evolution with Novelty search agent
ABCD strategy agent
并且该项目在github中获得了超过2.4k的star和1.1k的fork数量,除此之外,该开源项目也提供了一些常用的基准数据集,便于相关研究者进行实验和拓展。下图是该项目中的demo展示:
github地址:https://github.com/huseinzol05/Stock-Prediction-Models
2
Tensorflow work for stock prediction
这个项目主要用到了Tensorflow进行一系列深度学习以及强化学习模型的实现并将它们应用于股价的预测当中。如通过CNN识别股价的上涨模式,通过MLP或者DQN对特征进行预测等。除此之外,该项目也提供了详细的说明文档对用到的特征,以及模型的构建进行了介绍:
githud地址:https://github.com/kimber-chen/Tensorflow-for-stock-prediction
3
Reinforcement Learning for Stock Prediction
这个项目主要是通过强化学习来进行股价的预测,其中,强化学习用到了Q-learning,并将其应用于(短期)股票交易之中。该模型的训练和交易逻辑是使用n天的收盘价窗口来确定在给定时间采取的最佳行动是买入、卖出还是观望。结果证明,作为短期状态的表示,该模型不太擅长对长期趋势做出决策,但却非常擅长预测高峰和低谷。下面是该项目的一些结果展示:
github地址:https://github.com/llSourcell/Reinforcement_Learning_for_Stock_Prediction
4
US Stock Market Prediction by LSTM
LSTM是深度学习领域中处理时间序列数据的一个有效且常用的方法,近些年也有不少论文或者实践成果将LSTM应用于金融衍生品的价格预测当中。由于在传统的递归神经网络(RNN)中,存在一个所谓的梯度消失/爆炸的问题,这个问题来自于仅通过乘法来更新权值。为了解决这一问题,LSTM则考虑了另一种更新权值的方法,既采用乘法,也采用加法。在这项工作中,作者用了两种方法来做预测。一个是无状态LSTM模型,另一个是有状态LSTM模型。
github地址:https://github.com/christsaizyt/US-Stock-Market-Prediction-by-LSTM
5
stock-predict-by-RNN-LSTM
下面这个项目同样也是基于RNN以及LSTM实现的,并应用于高频股价的预测。具体的实现细节可以参考作者的论文:《High Frequenccy Trading Price Prediction using LSTM Recursive Neural Networks》。
github地址:https://github.com/blockchain99/stock-predict-by-RNN-LSTM
6
How-to-Predict-Stock-Prices-Easily-Demo
这个项目介绍了一些简单的例子,如通过LSTM来预测S&P在过去一段时间的收盘价,其中的代码主要是依赖keras以及tensorflow实现的。
github地址:https://github.com/llSourcell/How-to-Predict-Stock-Prices-Easily-Demo