weka分类器怎么设置样本类别_【程序喵笔记】小样本学习1.0

小样本学习

前几天接触小样本学习 Few-Shot Learning,感觉很是有意思。看到Shusen Wang老师的讲解,感觉很棒~持续学习~

学会学习 Lean to learn

小朋友去动物园,见到未知的动物,他虽然不知道类别,但是给他看一些卡片,让他比比看哪个长得像,他们很快的判断出所见动物的类别,这就是人类的学习。

6b7ef593dbe2593903b62fc54dd7200e.png

如果机器也可以学习呢?给一张图片(Query),这张图训练集并没有出现啊,但是不要慌,有卡片(Support Set)来让模型做选择题,依次比较相似度。学会完成多选一的选择题就是元学习(Meta Learning)需要学到的模型,也就是让机器学会学习。

cd7edf71564f14ea83eeb02ddd14c830.png

比较:大样本与小样本学习

传统监督学习

训练集样本大,机器根据训练集中的图片,并泛化到测试集,给出图片,识别出具体的类别。

85d74c1af57559a21c138add8d9f04a2.png

小样本学习

小样本直接训练神经网络会产生过拟合。小样本学习是元学习(Meta Learning) 的一种,希望模型学会学习,并不是让模型区分训练集未出现的新样本,而是是让机器学会学习事物的异同,给定图片,判断是否为同一类别。

b5c845b97b8e3e94afd85db5335e2da0.png

小样本学习基础

基本概念

(1)k-way n-shot Support Set

k-way: support set 中类别数n-shot: 每一类的样本数
  • d2af120e9ac113c2b73e4f76e75d739d.png

很明显,way越大,选择变多,准确率会下降,shot越大,样本数增多,准确率会增加。

(2)余弦相似度

衡量两个向量之间的的相似度,两个向量分别为xw,他们的二范数(长度)为1,两向量的内积为余弦相似度,可以理解为xw上投影的长度

2199eb415ac3024ee85a3983a0351a82.png

如果两个向量长度不一致,需要将两向量归一化,取内积:

1937bc467e6546888dfaa9a3dbc69d88.png

(3)softmax

softmax函数是常见激活函数,将向量映射为概率分布,常作为网络最后一层,输出的每个概率值表示对每个类别的Confidence(置信度)。让大的值变大,小的值变小,也就平和一点的max。

7624af19ab4cd99780000c945a682970.png

softmax 分类器,输入为特征值(全连接层输出的),输出为k维(k是类别数)的概率,W和b维参数,反向传播会训练。

1d39c3394e3ced21c7f8b555a2b7bca3.png

数据集

(1)Omniglot

  • 手写数据集,50种不同语言的1632个类别,每个类别有20个样本,样本尺寸为105*105
  • 训练集:964类,19280个样本
  • 测试集:659类,13180个样本
  • 2af07d0a83c5046ac47131a269860b44.png

(2)Mini-ImageNet

  • Matching Networks for One Shot Learning(MAML)论文中提出,从ImageNet提取100类,每个类别600样本,样本尺寸为84*84
  • 训练集:64类,38400个样本
  • 验证集:16类,9600个样本
  • 测试集:20类,1200个样本

网上只有从ImagNet上的原图和CSV文件,我按照MAML的方法生成的数据集,并上传到网盘:

链接:https://pan.baidu.com/s/1nt2WTIXM-bx3s0s51_v_eg 提取码:obg7

2579160037e97cba475878c559d07cb6.png

基本思想

  1. 预训练:从大规模数据集中训练一个卷积神经网络f来提取图像特征。可以是分类网络去掉全连接层,也可以使用孪生网络(Siamese Network)。
  2. 小样本预测 :将query和support set 中每个样本映射到特征空间,得到特征,依次比较querysupport set中每个特征的相似度( Similarity),进行判定。但是更常用的方法是用support set训练一个分类器,再进行预测,称为Fine Tuning。

预训练:孪生网络

Siamese Network, Siamese意思是连体婴儿,也就是网络的头不一样,但是脚连在一起,Siamese Network为孪生网络/连体网络。该网络最主要目的:构建卷积神经网络来比较样本之间的异同,训练网络有两种方法:

成对相似度

Pairwise Similarity,数据集取两个样本

1.训练数据集

训练集来自很大样本数据集,训练数据分为正样本,同一类抽取两张不同图片,标签为1,两样本相同;负样本,不同类别抽取两张图片,标签为0,两样本不同。

aa1efcbd7fdeaa16761fb288c1de8762.png

2.孪生网络结构

(1)提取特征的CNN

输入是图片,输出是特征向量,有卷积池化层的卷积神经网络就是 f

0ff2e11b0c1647783067d36037632389.png

(2)整体网络结构

训练集样本(两张图片)输入到CNN,分别提取出特征向量,两个特征向量相减的绝对值为Z,用来比较两个特征区别,再用全连接层处理 Z得到一个值,最后用sigmoid将其转换到[0,1]区间,这就是样本的sim

eb3dd7a7932ae59166c71e727afd5bbd.png

3.训练网络

(1)前向传播

前向传播就是计算损失,有了样本的sim,结合正负样本标签Target,就可以计算损失。

002afd8be83acc8fca2f87f3b197f240.png

(2)反向传播

反向传播更新卷积神经网络f和全连接层 Dense Layer的参数

6944e3f7339693ba12984ae279f3faa5.png

4.直接预测

querysupport set都是训练集中没出现的类别。querysupport set每一张作为样本,输入网络,分别得到sim,最大的为 query的类别。

三重损失

Triplet Loss,数据集取三个样本

1.训练数据集

在大规模数据集中,某一类别取一个样本为 Anchor,同一类别再取一个样本为Positive,不同类别取一个样本为Negative,这样构成了一组数据。

af80561ecf2cc4dceba8a852864f297e.png

2.孪生网络结构

同样有一个卷积神经网络作为特征提取,Positive和Negative分别与Anchor的特征向量求差的二范数的平方,记作距离d

8818eac22bb6c1dcb31f552294e8bcab.png

3.训练网络

(1)前向传播

距离表现在特征空间上,希望同一类离得近,不同类离得远。

d36bb30d9dba940a9ae0057ba7b1a249.png

所以,引入一个超参数,使得负样本距离远大于正样本距离加一个超参数,这样损失定义为

6d7ce5c8eb240fe7a5ad70e7d44d5893.png

(2)反向传播

由于并没有加入全连接层,所以在反向传播时只需要更新卷积神经网络f的参数

4.直接预测

querysupport set都是训练集中没出现的类别。querysupport set每一张作为样本,输入网络得到向量特征,计算两样本的距离(差的二范数的平方),距离最小的为 query的类别。

分类器

希望用support set实现一个分类器,来预测query是哪一类别的概率。先看一下基本分类器(直接分类不训练)和使用Fine Tuning的分类器(需要用support set训练)

基本分类器

预训练生成的特征提取网络记为f,提取 support set每个样本特征,如果是few-shot 提取后每类取均值(这是最简单的方法),然后归一化为[0,1]区间。

48e9305221ea9de7e4b37f1fc57f6fb3.png

同理,提取query 的特征,将所有向量映射到特征空间

21b7c30ffa38d3cecf519f94172a1248.png

support set三个特征记做M,构建softmax分类器 p = softmax(W*x + b),赋值W=M, b=0xquery的特征q。这样就可以做预测,显示query属于每一类的概率 p,概率最大为所属的类别。

56e717951c1b1b8bcb1c3221a623822f.png

Fine Tuning

基本分类器中的W,b是固定的,如果使用support set训练W,b进行微调(Fine Tuning),当然也可以训练特征提取的CNN。

前向传播

训练数据是来自support set中的有标签的样本,样本为x,标签为y

计算每一个样本的损失:预测值和和真实标签求交叉熵。累加 support set所有样本的损失

424e32fa355bda38e76ebefa0a5fecf6.png

反向传播

反向传播更新softmax分类器中的Wb,也可以更新特征提取网络f

f3a607e4c8dd47c772e2429026604a07.png

细节

(1)初始化

按照基本分类器赋值W=M, b=0,作为softmax分类器的初始化

(2)正则化

增加正则化可以使训练效果更好,在损失计算后面增加正则化(Regularization)

使用熵正则化

很明显,如果各个类别概率很相近,那么他们的熵会很大,我们希望各个概率差距大,熵小一点。

204bf5ca3bb4eec5fb00e4a3e5cac615.png

(3)引入余弦相似度

分类器原先公式为

把内积替换成余弦相似度 :

相关推荐

【程序喵读论文】分类网络进阶版

【程序喵读论文】图像分类网络

【程序喵笔记】Jupyter 实用篇

7253fb49b9e47ee5c9a4094f3e9735d9.png

edde9299d88c105963991234479d845b.png  扫码关注毛毛喵  28b780199dbba50e24dbc37dc8fa008d.png

一只写程序的喵

科研&生活

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值