基于python的移动物体检测_python opencv 检测移动物体并截图保存

最近在老家找工作,无奈老家工作真心太少,也没什么面试机会,不过之前面试一家公司,提了一个有意思的需求,检测河面没有有什么船只之类的物体,我当时第一反应是用opencv做识别,不过回家想想,河面相对的东西比较少,画面比较单一,只需要检测有没有移动的物体不就简单很多嘛,如果做街道垃圾检测的话可能就很复杂了,毕竟街道上行人,车辆,动物,很多干扰物,于是就花了一个小时写了一个小的demo,只需在程序同级目录创建一个img目录就可以了

# -*-coding:utf-8 -*-

__author__ = "ZJL"

import cv2

import time

# 保存截图

save_path = './img/'

# 定义摄像头对象,其参数0表示第一个摄像头

camera = cv2.VideoCapture(0)

# 判断视频是否打开

if (camera.isOpened()):

print('Open')

else:

print('摄像头未打开')

# 测试用,查看视频size

size = (int(camera.get(cv2.CAP_PROP_FRAME_WIDTH)),

int(camera.get(cv2.CAP_PROP_FRAME_HEIGHT)))

print('size:'+repr(size))

# 帧率

fps = 5

# 总是取前一帧做为背景(不用考虑环境影响)

pre_frame = None

while(1):

start = time.time()

# 读取视频流

ret, frame = camera.read()

# 转灰度图

gray_lwpCV = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

if not ret:

break

end = time.time()

cv2.imshow("capture", frame)

# 运动检测部分

seconds = end - start

if seconds < 1.0 / fps:

time.sleep(1.0 / fps - seconds)

gray_lwpCV = cv2.resize(gray_lwpCV, (500, 500))

# 用高斯滤波进行模糊处理

gray_lwpCV = cv2.GaussianBlur(gray_lwpCV, (21, 21), 0)

# 如果没有背景图像就将当前帧当作背景图片

if pre_frame is None:

pre_frame = gray_lwpCV

else:

# absdiff把两幅图的差的绝对值输出到另一幅图上面来

img_delta = cv2.absdiff(pre_frame, gray_lwpCV)

#threshold阈值函数(原图像应该是灰度图,对像素值进行分类的阈值,当像素值高于(有时是小于)阈值时应该被赋予的新的像素值,阈值方法)

thresh = cv2.threshold(img_delta, 25, 255, cv2.THRESH_BINARY)[1]

# 膨胀图像

thresh = cv2.dilate(thresh, None, iterations=2)

# findContours检测物体轮廓(寻找轮廓的图像,轮廓的检索模式,轮廓的近似办法)

image, contours, hierarchy = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

for c in contours:

# 设置敏感度

# contourArea计算轮廓面积

if cv2.contourArea(c) < 1000:

continue

else:

print("出现目标物,请求核实")

# 保存图像

cv2.imwrite(save_path + str(time.strftime('%Y-%m-%d %H:%M:%S',time.localtime(time.time()))) + '.jpg', frame)

break

pre_frame = gray_lwpCV

if cv2.waitKey(1) & 0xFF == ord('q'):

break

# release()释放摄像头

camera.release()

#destroyAllWindows()关闭所有图像窗口

cv2.destroyAllWindows()

想出现一个矩形框跟随移动物于是进行了改造,结果发现效果不是很理想,不能很好的框住移动目标,要么只框一部分,要么出现在移动目标附近,尴尬

# -*-coding:utf-8 -*-

__author__ = "ZJL"

import cv2

import time

# 保存截图

save_path = './img/'

# 定义摄像头对象,其参数0表示第一个摄像头

camera = cv2.VideoCapture(0)

# 判断视频是否打开

if (camera.isOpened()):

print('Open')

else:

print('摄像头未打开')

# 测试用,查看视频size

size = (int(camera.get(cv2.CAP_PROP_FRAME_WIDTH)),

int(camera.get(cv2.CAP_PROP_FRAME_HEIGHT)))

print('size:'+repr(size))

# 帧率

fps = 5

# 总是取前一帧做为背景(不用考虑环境影响)

pre_frame = None

while(1):

start = time.time()

# 读取视频流

ret, frame = camera.read()

# 转灰度图

gray_lwpCV = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

if not ret:

break

end = time.time()

# 显示图像

# cv2.imshow("capture", frame)

# 运动检测部分

seconds = end - start

if seconds < 1.0 / fps:

time.sleep(1.0 / fps - seconds)

gray_lwpCV = cv2.resize(gray_lwpCV, (500, 500))

# 用高斯滤波进行模糊处理

gray_lwpCV = cv2.GaussianBlur(gray_lwpCV, (21, 21), 0)

# 如果没有背景图像就将当前帧当作背景图片

if pre_frame is None:

pre_frame = gray_lwpCV

else:

# absdiff把两幅图的差的绝对值输出到另一幅图上面来

img_delta = cv2.absdiff(pre_frame, gray_lwpCV)

#threshold阈值函数(原图像应该是灰度图,对像素值进行分类的阈值,当像素值高于(有时是小于)阈值时应该被赋予的新的像素值,阈值方法)

thresh = cv2.threshold(img_delta, 25, 255, cv2.THRESH_BINARY)[1]

# 膨胀图像

thresh = cv2.dilate(thresh, None, iterations=2)

# findContours检测物体轮廓(寻找轮廓的图像,轮廓的检索模式,轮廓的近似办法)

image, contours, hierarchy = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

for c in contours:

# 设置敏感度

# contourArea计算轮廓面积

if cv2.contourArea(c) < 1000:

continue

else:

# 画出矩形框架,返回值x,y是矩阵左上点的坐标,w,h是矩阵的宽和高

(x, y, w, h) = cv2.boundingRect(c)

# rectangle(原图,(x,y)是矩阵的左上点坐标,(x+w,y+h)是矩阵的右下点坐标,(0,255,0)是画线对应的rgb颜色,2是所画的线的宽度)

cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)

# putText 图片中加入文字

cv2.putText(frame, "now time: {}".format(str(time.strftime('%Y-%m-%d %H:%M:%S',time.localtime(time.time()))) ), (10, 20),

cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)

print("出现目标物,请求核实")

# 保存图像

cv2.imwrite(save_path + str(time.strftime('%Y-%m-%d %H:%M:%S',time.localtime(time.time()))) + '.jpg', frame)

break

pre_frame = gray_lwpCV

# 显示图像

cv2.imshow("capture", frame)

# cv2.imshow("Thresh", thresh)

# 进行阀值化来显示图片中像素强度值有显著变化的区域的画面

cv2.imshow("Frame Delta", img_delta)

if cv2.waitKey(1) & 0xFF == ord('q'):

break

# release()释放摄像头

camera.release()

#destroyAllWindows()关闭所有图像窗口

cv2.destroyAllWindows()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值