结巴分词关键词相似度_文本相似度分析(基于jieba和gensim)

本文介绍了如何使用jieba进行分词,包括精确模式、全模式和搜索引擎模式,并展示了如何添加自定义词典。接着通过gensim创建词袋模型,转换为向量并使用TF-IDF算法计算文本相似度。
摘要由CSDN通过智能技术生成

基础概念

本文在进行文本相似度分析过程分为以下几个部分进行,文本分词

语料库制作

算法训练

结果预测

分析过程主要用两个包来实现jieba,gensim

jieba:主要实现分词过程

gensim:进行语料库制作和算法训练

结巴(jieba)分词

在自然语言处理领域中,分词和提取关键词都是对文本处理时通常要进行的步骤。用Python语言对英文文本进行预处理时可选择NLTK库,中文文本预处理可选择jieba库。结巴分词是基于统计的分词方法,它对给出大量已经分词的文本,利用统计机器学习模型学习词语切分的规律(称为训练),从而实现对未知文本的切分。例如最大概率分词方法和最大熵分词方法等。随着大规模语料库的建立,统计机器学习方法的研究和发展,基于统计的中文分词方法渐渐成为了主流方法。

jieba分词的三种模式:精确模式:将句子最精确的分开,适合文本分析

全模式:句子中所有可以成词的词语都扫描出来,速度快,不能解决歧义

搜索引擎模式:在精确的基础上,对长词再次切分,提高召回

结巴分词的其他特点诸如:支持繁体分词,支持自定义词典,基于Trie树结构实现高效的词图扫描,采用了动态规划查找最大概率路径等特点。

jieba库中分词函数

1、jieba.cut()方法

参数string:需要接受分词的字符串。

参数cut_all:控制是否采用全模式分词发,参数为True时表示采用全模式。

参数HMM:控制是否使用HMM模型,参数为True时表示使用HMM模型。

2、jieba.cut_for_search()

参数string:需要接受分词的字符串。

参数HMM:控制是否使用HMM模型,参数为True时表示使用HMM模型。

jieba.cut 以及 jieba.cut_for_search 返回的结构都是一个可迭代的 generator,可以使用 for 循环来获得分词后得到的每一个词语。jieba.lcut和jieba.lcut_for_search参数和上面两个方法一致但返回的是一个list。

python上的分词输出对比import jieba

string='上海市浦东新区世

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值