代数余子式和余子式符号_线性代数(3.1) -- 行列式 (隐藏在"大公式"背后的真相)...

b51838a81d20ecbe8c7b57b37ac9548d.png

行列式 (Determinant) 可以部分解决线性方程组求解的问题.

  • 什么是行列式, 为何称之为行列式?
  • 为何只能部分解决, 哪部分可以解决?
  • 解决的思路是什么?
  • 具体步骤是什么?
  • 为什么是这样的步骤?
  • 是否可以改进?
  • 与消元法有什么关联?

要诀:

  • 基于线性方程组的几何意义构建行列式的性质和几何意义;
  • 基于消元法回看行列式的性质;
  • 基于消元法发现Cramer法则.

行列式是一个数, 它由

个数计算得到的
个数. 行列式从它的英文--Determinant 更能体现它的来源. 最初希望通过方形线性方程组的所有
个系数构造出一个数. 当这个数不为零时, 线性方程组有唯一解.
行列式真正的名字其实是判别式. 这正如一元二次方程是否有解, 有多少解, 可以通过另外一个我们更熟知的判别式确定. 另外, 我们可以通过一元二次方程的判别式将解表达出来. 同样, 我们也希望利用行列式将线性方程组的解表达出来, 这便是 Cramer 法则.

起初行列式是为了判断

个未知数
个线性方程是否有唯一解而提出的.
个未知数
个线性方程对应的判别式称之为
阶行列式
.
的不同对应的判别式自然不同, 那么它们之间是否有联系呢? 是否有一个统一的, 递归的定义呢? 无论如何,
行列式是由
个数定义的一个数
.

要想完全说清楚行列式, 就要明白

个未知数
个线性方程的线性方程组解存在唯一的充要条件. 我们从
说起. 虽然可以利用消元法计算得到, 但写出公式也是比较繁杂, 毕竟分别是
个数 (
个系数,
个常数项 ) 和
个数 (
个系数,
个常数项 ) 的一个公式. 如果
很大, 公式的长度就难以想象了. 但归根结底我们是想研究线性方程组解的存在唯一性, 而消元法恰是解决这个问题的良方. 消元法催生行列式, 虽然历史上行列式的提出早于消元法.

线性方程组的几何意义

数形结合是一个非常好用的数学方法. 正如一元二次方程和抛物线的完美结合一样, 线性方程和平面有不解之缘.

对于一个二元线性方程

, 它无非是一条直线而已, 而且这条直线的法向量是
. 那么线性方程组

什么时候存在唯一解呢? 即, 两条直线相交于一点. 换种思维, 两条直线的法向量

不平行. 再换种思维, 这两个法向量张成的平行四边形面积不为零. 换句话说,
线性方程组存在唯一解的充要条件就是两条直线的法向量构成的平行四边形面积不为零. 就是它, 这个平行四边面积就是我们要找的那个判别线性方程组存在唯一解的数. 更重要的是, 这个数可以非常简单的推广到
个未知数
个线性方程的情形. 即,
维空间中的
个超平面的
个法向量张成的"平行四边形"的"面积".

3148ddbedb16c745a00626599b458307.png

下面就探讨这个面积如何计算. 首先, 我们用下述符号表示

张成的平行四边形的面积

.

然后, 根据面积的意义, 容易得到,

d25d355af0e03d9e6499fd29da8f97ae.png

324fcc3c1f60323b229046e9f22448ac.png

以及

d85414c57569321d3f2364c49f2287f9.png

这样, 我们基于上述规定, 可以得到"交换两行, 行列式变号".

这也告诉我们, 这里所说的面积其实是有正负的. 同时, 基于"交换两行, 行列式变号"也让我们可以证明出"两行相同的行列式为零".

值得注意的是, 某行每个元素分裂成两个数的行列式等于分别两个行列式的和. 某行每个元素乘以一个数的行列式等于原行列式乘以这个数. 这两个规定可以归结为行列式关于固定的一行有线性性.

所以,

这就是二阶行列式的定义啦, 这不仅让我们知道如何计算两个向量张成的平行四边形面积 (其实是具有正负号的"面积"), 也让我们明白了怎么用一个数判断线性方程组

何时存在唯一解. 那么三阶行列式就是

阶行列式的定义就是根据二阶, 三阶行列式的计算方法归纳总结出来的.
阶行列式是
个行列式的和, 其中每个行列式中每行每列只有一个元素是原来行列式中的数, 其它全为零
. 再根据若交换行, 则行列式变号, 以及"单位正方形面积"为
, 得到
阶行列式的"
大公式"定义. 之所以称之为"大", 是因为
阶行列式的定义式真的非常长.

那么, 可以通过行列式的"大公式"定义, 证明诸多行列式的性质. 这也是教科书上的做法. 我们这里只是让"大公式"的引入没有那么的生硬.

行列式的性质

从行列式的几何意义, 我们可以总结出行列式的下述性质:

  1. ;
  2. ;
  3. ;
  4. ;
  5. ;
  6. ;
  7. .

容易证明,

  • 性质2
    性质4;
  • 当性质3成立的时候, 性质2
    性质5;
  • 性质4
    性质6;
  • 性质1, 3, 5
    性质7.

换句话讲, 上述性质中1, 2, 3, 最为关键, 基于前三条性质可以得到后四条性质.

虽然我们是通过二阶行列式阐述这七条性质, 但它们很容易推广到

阶行列式.

行列式的真相

  • 原名: 判别式 -- 希望找到一个数判断
    个未知数
    个线性方程的线性方程组是否存在唯一解;
  • 化名: 行列式 -- 凡是关于行的性质, 列同样具备, 行与列是平等的;
  • 表象: 大公式 -- 它的复杂性源于行列式的逐行分裂,且交换行列形成逆序数;
  • 内心: 平行四边形的"有向"面积 -- 三条性质的图像呈现出行列式的几何意义;
  • 性格: 一共七条性质 -- 前三条性质是本质,后四条性质是外延;
  • 父亲: 莱布尼兹;
  • 兄弟:
    .

光阴给我们经验, 视频给我们知识.

  • 厦门大学-- 高等代数-- 第一章-- 第4节-- 行列式
  • 麻省理工学院-- 线性代数-- 第18集-- 行列式及其性质
  • 麻省理工学院-- 线性代数-- 第19集-- 行列式公式和代数余子式
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值