avl删除根节点图解_什么是平衡二叉树(AVL)

前言

Wiki:在计算机科学中,AVL树是最早被发明的自平衡二叉查找树。在AVL树中,任一节点对应的两棵子树的最大高度差为1,因此它也被称为高度平衡树。查找、插入和删除在平均和最坏情况下的时间复杂度都是O(logn)。增加和删除元素的操作则可能需要借由一次或多次树旋转,以实现树的重新平衡。AVL 树得名于它的发明者 G. M. Adelson-Velsky 和 Evgenii Landis,他们在1962年的论文《An algorithm for the organization of information》中公开了这一数据结构。

1 为什么要有平衡二叉树

二叉搜索树一定程度上可以提高搜索效率,但是当原序列有序时,例如序列 A = {1,2,3,4,5,6},构造二叉搜索树如图 1.1。依据此序列构造的二叉搜索树为右斜树,同时二叉树退化成单链表,搜索效率降低为 O(n)。

71eb04b3f71baac94ee542ce6b6f0e5f.png

图 1.1

在此二叉搜索树中查找元素 6 需要查找 6 次。

二叉搜索树的查找效率取决于树的高度,因此保持树的高度最小,即可保证树的查找效率。同样的序列 A,将其改为图 1.2 的方式存储,查找元素 6 时只需比较 3 次,查找效率提升一倍。

4ec50a546bc3e1547d92c1e6de38dd22.png

图 1.2

可以看出当节点数目一定,保持树的左右两端保持平衡,树的查找效率最高。

这种左右子树的高度相差不超过 1 的树为平衡二叉树。

2. 定义

平衡二叉查找树:简称平衡二叉树。由前苏联的数学家 Adelse-Velskil 和 Landis 在 1962 年提出的高度平衡的二叉树,根据科学家的英文名也称为 AVL 树。它具有如下几个性质:

  1. 可以是空树。
  2. 假如不是空树,任何一个结点的左子树与右子树都是平衡二叉树,并且高度之差的绝对值不超过 1。

平衡之意,如天平,即两边的分量大约相同。

例如图 2.1 不是平衡二叉树,因为结点 60 的左子树不是平衡二叉树。

85d36434fe4cfe1f92c85dd126cdc590.png

图 2.1

图 2.2 也不是平衡二叉树,因为虽然任何一个结点的左子树与右子树都是平衡二叉树,但高度之差已经超过 1 。

634118acfc6c1535ff3f7b3e4ee091ad.png

图 2.2

图 2.3 是平衡二叉树。

737c10751164d8e5a410aa40c6cf7ea1.png

图 2.3

3. 平衡因子

定义:某节点的左子树与右子树的高度(深度)差即为该节点的平衡因子(BF,Balance Factor),平衡二叉树中不存在平衡因子大于 1 的节点。在一棵平衡二叉树中,节点的平衡因子只能取 0 、1 或者 -1 ,分别对应着左右子树等高,左子树比较高,右子树比较高。

239a288d5c0e734ee269bf891a2a3fb4.png

图 3.1

74eb96e89d6f36e92dd99125725f1b3a.png

图 3.2

d9f3bc8268c94a1883e3ca33194de487.png

图 3.3

4. 节点结构

定义平衡二叉树的节点结构:

typedef struct AVLNode *Tree;typedef int ElementType;struct AVLNode{ int depth; //深度,这里计算每个结点的深度,通过深度的比较可得出是否平衡 Tree parent; //该结点的父节点 ElementType val; //结点值 Tree lchild; Tree rchild; AVLNode(int val=0) { parent = NULL; depth = 0; lchild = rchild = NULL; this->val=val; }};

5. AVL树插入时的失衡与调整

图 5.1 是一颗平衡二叉树

d655d2a38eac8b4b9dab973f6a715ef0.png

图 5.1

在此平衡二叉树插入节点 99 ,树结构变为:

d97e3d21d4a4708eb91f2efb0c866b7e.gif

动图 5.2

在动图 5.2 中,节点 66 的左子树高度为 1,右子树高度为 3,此时平衡因子为 -2,树失去平衡。

在动图 5.2 中,以节点 66 为父节点的那颗树就称为 最小失衡子树

最小失衡子树:在新插入的结点向上查找,以第一个平衡因子的绝对值超过 1 的结点为根的子树称为最小不平衡子树。也就是说,一棵失衡的树,是有可能有多棵子树同时失衡的。而这个时候,我们只要调整最小的不平衡子树,就能够将不平衡的树调整为平衡的树。

平衡二叉树的失衡调整主要是通过旋转最小失衡子树来实现的。根据旋转的方向有两种处理方式,左旋右旋

旋转的目的就是减少高度,通过降低整棵树的高度来平衡。哪边的树高,就把那边的树向上旋转。

5.1 左旋

0163aa0f23b4067065a8d8a5afc9fdae.png

图 5.1.1

以图 5.1.1 为例,加入新节点 99 后, 节点 66 的左子树高度为 1,右子树高度为 3,此时平衡因子为 -2。为保证树的平衡,此时需要对节点 66 做出旋转,因为右子树高度高于左子树,对节点进行左旋操作,流程如下:

(1)节点的右孩子替代此节点位置

(2)右孩子的左子树变为该节点的右子树

(3)节点本身变为右孩子的左子树

整个操作流程如动图 5.1.2 所示。

846f8edcdc4a518c4c89360503759449.gif

动图 5.1.2

  • 节点的右孩子替代此节点位置 —— 节点 66 的右孩子是节点 77 ,将节点 77 代替节点 66 的位置
  • 右孩子的左子树变为该节点的右子树 —— 节点 77 的左子树为节点 75,将节点 75 挪到节点 66 的右子树位置
  • 节点本身变为右孩子的左子树 —— 节点 66 变为了节点 77 的左子树

5.2 右旋

右旋操作与左旋类似,操作流程为:

(1)节点的左孩子代表此节点

(2)节点的左孩子的右子树变为节点的左子树

(3)将此节点作为左孩子节点的右子树。

9ab0d2f64645b2828d5231ea1042bfe8.gif

动图 5.2.1

6. AVL树的四种插入节点方式

假设一颗 AVL 树的某个节点为 A,有四种操作会使 A 的左右子树高度差大于 1,从而破坏了原有 AVL 树的平衡性。平衡二叉树插入节点的情况分为以下四种:

4cc6f7cc3aeb41e1aba9b4e7c9fc8969.png

具体分析如下:

6.1 A的左孩子的左子树插入节点(LL)

只需要执行一次右旋即可。

6b2b13f72243f7031909323fcc56a2f2.gif

动图 6.1

实现代码如下:

//LL型调整函数//返回:新父节点Tree LL_rotate(Tree node){ //node为离操作结点最近的失衡的结点 Tree parent=NULL,son; //获取失衡结点的父节点 parent=node->parent; //获取失衡结点的左孩子 son=node->lchild; //设置son结点右孩子的父指针 if (son->rchild!=NULL) son->rchild->parent=node; //失衡结点的左孩子变更为son的右孩子 node->lchild=son->rchild; //更新失衡结点的高度信息 update_depth(node); //失衡结点变成son的右孩子 son->rchild=node; //设置son的父结点为原失衡结点的父结点 son->parent=parent; //如果失衡结点不是根结点,则开始更新父节点 if (parent!=NULL){ //如果父节点的左孩子是失衡结点,指向现在更新后的新孩子son if (parent->lchild==node){ parent->lchild=son; }else{ //父节点的右孩子是失衡结点 parent->rchild=son; } } //设置失衡结点的父亲 node->parent=son; //更新son结点的高度信息 update_depth(son); return son;}

6.2 A的右孩子的右子树插入节点(RR)

只需要执行一次左旋即可。

f558e8d73b68bfa255673cb813e588ef.gif

动图 6.2

实现代码如下:

//RR型调整函数//返回新父节点Tree RR_rotate(Tree node){ //node为离操作结点最近的失衡的结点 Tree parent=NULL,son; //获取失衡结点的父节点 parent=node->parent; //获取失衡结点的右孩子 son=node->rchild; //设置son结点左孩子的父指针 if (son->lchild!=NULL){ son->lchild->parent=node; } //失衡结点的右孩子变更为son的左孩子 node->rchild=son->lchild; //更新失衡结点的高度信息 update_depth(node); //失衡结点变成son的左孩子 son->lchild=node; //设置son的父结点为原失衡结点的父结点 son->parent=parent; //如果失衡结点不是根结点,则开始更新父节点 if (parent!=NULL){ //如果父节点的左孩子是失衡结点,指向现在更新后的新孩子son if (parent->lchild==node){ parent->lchild=son; }else{ //父节点的右孩子是失衡结点 parent->rchild=son; }  } //设置失衡结点的父亲 node->parent=son; //更新son结点的高度信息 update_depth(son); return son;}

6.3 A的左孩子的右子树插入节点(LR)

若 A 的左孩子节点 B 的右子树 E 插入节点 F ,导致节点 A 失衡,如图:

64e0fe69d63f01c624bedeea85911893.png

图 6.3

A 的平衡因子为 2 ,若仍按照右旋调整,则变化后的图形为这样:

e6252bdf9928be9e3ee0e0559de65519.png

图 6.3.1

经过右旋调整发现,调整后树仍然失衡,说明这种情况单纯的进行右旋操作不能使树重新平衡。那么这种插入方式需要执行两步操作,使得旋转之后为 原来根结点的左孩子的右孩子作为新的根节点

(1)对失衡节点 A 的左孩子 B 进行左旋操作,即上述 RR 情形操作。

(2)对失衡节点 A 做右旋操作,即上述 LL 情形操作。

调整过程如下:

7ff5cec2001a47a3f3204fd5a7e8adef.png

图 6.3.2

a081b123248dfb30749bee0501b03c3c.png

图 6.3.3

也就是说,经过这两步操作,使得 原来根节点的左孩子的右孩子 E 节点成为了新的根节点

代码实现:

//LR型,先左旋转,再右旋转//返回:新父节点Tree LR_rotate(Tree node){ RR_rotate(node->lchild); return LL_rotate(node);}

6.4 A的右孩子的左子树插入节点(RL)

右孩子插入左节点的过程与左孩子插入右节点过程类似,也是需要执行两步操作,使得旋转之后为 原来根结点的右孩子的左孩子作为新的根节点

(1)对失衡节点 A 的右孩子 C 进行右旋操作,即上述 LL 情形操作。

(2)对失衡节点 A 做左旋操作,即上述 RR 情形操作。

08d3690524ef94922c1e6bbe27f0996f.png

图 6.4

64c6317519922b16f1d2e8462ac7fe59.png

图 6.4.1

8a8d0e0baf13eb0b33e3500a4dc0a7d3.png

图 6.4.2

也就是说,经过这两步操作,使得 原来根节点的右孩子的左孩子 D 节点成为了新的根节点

代码实现:

//RL型,先右旋转,再左旋转//返回:新父节点Tree RL_rotate(Tree node){ LL_rotate(node->rchild); return RR_rotate(node);}

补充

上述四种插入方式的代码实现的辅助代码如下:

//更新当前深度void update_depth(Tree node){ if (node==NULL){ return; }else{ int depth_Lchild=get_balance(node->lchild); //左孩子深度 int depth_Rchild=get_balance(node->rchild); //右孩子深度 node->depth=max(depth_Lchild,depth_Rchild)+1; }}//获取当前结点的深度int get_balance(Tree node){ if (node==NULL){ return 0; } return node->depth;}//返回当前平衡因子int is_balance(Tree node){ if (node==NULL){ return 0; }else{ return get_balance(node->lchild)-get_balance(node->rchild);  }}

6.5 小总结

  1. 在所有的不平衡情况中,都是按照先 寻找最小不平衡树,然后 寻找所属的不平衡类别,再 根据 4 种类别进行固定化程序的操作
  2. LL , LR ,RR ,RL其实已经为我们提供了最后哪个结点作为新的根指明了方向。如 LR 型最后的根结点为原来的根的左孩子的右孩子,RL 型最后的根结点为原来的根的右孩子的左孩子。只要记住这四种情况,可以很快地推导出所有的情况。
  3. 维护平衡二叉树,最麻烦的地方在于平衡因子的维护。建议读者们根据小吴提供的图片和动图,自己动手画一遍,这样可以更加感性的理解操作。

7. AVL树的四种删除节点方式

AVL 树和二叉查找树的删除操作情况一致,都分为四种情况:

(1)删除叶子节点

(2)删除的节点只有左子树

(3)删除的节点只有右子树

(4)删除的节点既有左子树又有右子树

只不过 AVL 树在删除节点后需要重新检查平衡性并修正,同时,删除操作与插入操作后的平衡修正区别在于,插入操作后只需要对插入栈中的弹出的第一个非平衡节点进行修正,而删除操作需要修正栈中的所有非平衡节点。

删除操作的大致步骤如下:

  • 以前三种情况为基础尝试删除节点,并将访问节点入栈。
  • 如果尝试删除成功,则依次检查栈顶节点的平衡状态,遇到非平衡节点,即进行旋转平衡,直到栈空。
  • 如果尝试删除失败,证明是第四种情况。这时先找到被删除节点的右子树最小节点并删除它,将访问节点继续入栈。
  • 再依次检查栈顶节点的平衡状态和修正直到栈空。

对于删除操作造成的非平衡状态的修正,可以这样理解:对左或者右子树的删除操作相当于对右或者左子树的插入操作,然后再对应上插入的四种情况选择相应的旋转就好了。

总结

AVL 的旋转问题看似复杂,但实际上如果你亲自用笔纸操作一下还是很好理解的。

戳“阅读原文”前往我的博客进行阅读

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值