分析脑电在涉及到多次比较的时候,往往要进行多重比较校正,常用的是有FWE校正和FDR,还有NBS校正,以下的是关于FDR校正的实现,资料来自网上
FDR = mafdr(PValues);
%最简单的实现方式,基于Storey procedure ( introduced by Storey, 2002),适用于P值数量>1000的情况,否则原则上会崩溃。我用MATLAB测试过,会出现warning,但不会报错。严格程度较低,如果你的 ttest P值不是特别显著(0.01-0.05),可以用这个试试,或许可以过FDR校正.
FDR=mafdr(P,'BHFDR', true);
%基于linear step-up (LSU) procedure (introduced by Benjamini and Hochberg, 1995)。最常见的FDR校正方式,严格程度较高,但比
Bonferroni校正低,适用于 ttest P值显著(<0.01)。
注:
BHFDR的计算过程
将一系列的p值按照从大到小排序,然后利用下述公式计算每个p值所对应的FDR值:
公式:FDR = p * (n/i), p是pvalue,n是p值个数,最大的P值的i值为n,第二大则是n-1,依次至最小为1。
将计算出来的FDR值作为新p值,如果某一个p值所对应的FDR值大于前一位p值(更大的p值)所对应的FDR值,则放弃公式计算出来的FDR值,选用与它前一位相同的值,因此会产生连续相同FDR值的现象;反之则保留计算的FDR值。
返回p值对应的FDR值。
FDR=mafdr(P,'Lambda', [0.01:0.01:0.95]);
%指定调整参数λ,用于估计零假设为真的先验概率,Lambda Value可以是:(1)0-1内任意一值 (2)4个以上序列,或以示例的矩阵形式:[first:incr:last],mafdr函数自动选择最优参数。严格程度比1略低,我用第一个不能过校正但是用这个居然可以过,为FDR苦恼得同志们可以被解救了。
FDR= mafdr(P, 'Method', MethodValue, [0.01:0.01:0.95]);
%对选择最优参数lambda的方法进行选择,'bootstrap' (default),'polynomial'。第3种方法的延伸。