bmp 双线性插值_双线性插值原理与实现

本文详细介绍了双线性插值原理,用于解决图像放大过程中因像素位置缺失导致的失真问题。通过MATLAB代码展示了如何实现双线性插值,以获取放大图像中非整数坐标点的灰度值,从而提高图像放大质量。
摘要由CSDN通过智能技术生成

在对图像进行空间变换的过程中,典型的情况是在对图像进行放大处理的时候,图像会出现失真的现象。这是由于在变换之后的图像中,存在着一些变换之前的图像中没有的像素位置。为了说明这个问题,不妨假设有一副大小为64x64的灰度图像A,现在将图像放大到256x256,不妨令其为图像B,如图1所示。显然,根据简单的几何换算关系,可以知道B图像中(x,y)处的像素值应该对应着A图像中的(x/4,y/4)处的象素值,即

B(x,y) = A(x/4,y/4) (式1)

对于B中的(4,4),(4,8),(4,16)…(256,256)这些位置,通过式1就可以计算出其在A中的位置,从而可以得到灰度值。但是,对于B中的(1,1),(1,2),(1,3)…等等这些坐标点而言,如果按照式1计算的话,那么它们在A中对应的坐标不再是整数。比如,对于B中的坐标点(1,1),其在A中的对应坐标就变成了(0.25,0.25)。对于数字图像而言,小数坐标是没有意义的。因此,必须考虑采用某种方法来得到B中像素点在A中对应位置上的灰度级。处理这一问题的方法被称为图像灰度级插值。常用的插值方式有三种:最近邻域插值、双线性插值、双三次插值。理论上来讲,最近邻域插值的效果最差,双三次插值的效果最好,双线性插值的效果介于两者之间。不过对于要求不是非常严格的图像插值而言,使用双线性插值通常就足够了。

本文中将采用matlab实现一个双线性插值的程序。双线性插值的原理如图2所示。图像之间坐标映射有两种方式:如果是从原图像的坐标映射到目标图像,称为前向映射,反之则称为后向映射。显然,双线性插值采用的是后向映射方式。下面对图2的具体含义进行说明。首先,根据几何关系,从B图像中的坐标(x,y)得到A图像中的坐标(x/4,y/4),但是,映射得到的这个坐标(x/4,y/4)并没有刚好位于A图像中的整数坐标上,而是映射到了四个像素坐标(a,b)、(a+1,b)、(a,b+1)、(a+1,b+1)所围成的矩形之间,其中,a、b是A图像的整数坐标。现在的问题就是如何根据A(a,b)、A(a+1,b)、A(a,b+1)、A(a+1,b+1)这四个点上的灰度级求出A(x/4,y/4)处的灰度级。双线性插值技术采用的方法是:假设A图像的灰度级变化在纵向方向上是线性变化的,这样根据直线方程或者几何比例关系就能够求得(a,y/4)和(a+1,y/4)坐标处的灰度级A(a,y/4)和A(a+1,y/4)。然后,再假设在((a,y/4),A(a,y/4))和(a+1,y/4),A(a+1,y/4))这两点所确定的直线上,灰度级仍然是线性变化的。求出直线方程,于是就可以求得(x/4,y/4)处的灰度级A(x/4,y/4)。这就是双线性插值的基本思路。其中用到的两个基本假设是:首先灰度级在纵向方向上是线性变化的,然后假定灰度级在横向方向上也是线性变化的。

图1 图像缩放示意图

图2 双线性插值示意图

附录:

I=imread('image1.bmp');

[m,n]=size(I);

K=3;

width = K * m;

height = K * n;

J = uint8(zeros(width,height));

% width scale and height scale

widthScale = m/width;

heightScale = n/height;

% bilinear interplot

for x = 5:width - 5

for y = 5:height - 5

xx = x * widthScale;

yy = y * heightScale;

if (xx/double(uint16(xx)) == 1.0) & (xx/double(uint16(xx)) == 1.0)

J(x,y) = I(int16(xx),int16(yy));

else % a or b is not integer

a = double(uint16(xx)); % (a,b) is the base-dot

b = double(uint16(yy));

x11 = double(I(a,b)); % x11

x12 = double(I(a,b+1)); % x12

x21 = double(I(a+1,b)); % x21

x22 = double(I(a+1,b+1)); % x22

J(x,y) = uint8( (b+1-yy) * ((xx-a)*x21 + (a+1-xx)*x11) + (yy-b) * ((xx-a)*x22 +(a+1-xx) * x12)); % calculate J(x,y)

end

end

end

% 显示图像

imwrite(J, '放大的图像.jpg', 'jpg');

imshow(I),title('原图');

figure

imshow(J),title('放大图');

I=imread('image1.bmp');

[m,n]=size(I);

K=3;

width = K * m;

height = K * n;

J = uint8(zeros(width,height));

% width scale and height scale

widthScale = m/width;

heightScale = n/height;

% bilinear interplot

for x = 5:width - 5

for y = 5:height - 5

xx = x * widthScale;

yy = y * heightScale;

if (xx/double(uint16(xx)) == 1.0) & (xx/double(uint16(xx)) == 1.0)

J(x,y) = I(int16(xx),int16(yy));

else % a or b is not integer

a = double(uint16(xx)); % (a,b) is the base-dot

b = double(uint16(yy));

x11 = double(I(a,b)); % x11

x12 = double(I(a,b+1)); % x12

x21 = double(I(a+1,b)); % x21

x22 = double(I(a+1,b+1)); % x22

J(x,y) = uint8( (b+1-yy) * ((xx-a)*x21 + (a+1-xx)*x11) + (yy-b) * ((xx-a)*x22 +(a+1-xx) * x12)); % calculate J(x,y)

end

end

end

% 显示图像

imwrite(J, '放大的图像.jpg', 'jpg');

imshow(I),title('原图');

figure

imshow(J),title('放大图');

好的,我了解了您的问题。下面是关于 BMP 图像的双线性插值放大缩小及彩色转黑白的 C/C++ 实现方法。 1. 双线性插值放大缩小 双线性插值是一种常见的图像放大缩小算法,其基本思想是通过在原图像上进行采样,然后根据采样点周围的像素值计算出目标图像上对应像素的值。 具体实现步骤如下: 1)计算出目标图像上每个像素在原图像上对应的采样点坐标; 2)根据采样点周围的像素值,计算出目标像素的值。 下面是 C/C++ 的实现代码: ``` void BilinearInterpolation(unsigned char* srcData, unsigned char* dstData, int srcWidth, int srcHeight, int dstWidth, int dstHeight) { int x, y, k; float xScale = (float)srcWidth / (float)dstWidth; float yScale = (float)srcHeight / (float)dstHeight; float xDiff, yDiff; int x1, y1, x2, y2; float v1, v2, v3, v4; for (y = 0; y < dstHeight; y++) { for (x = 0; x < dstWidth; x++) { xDiff = (x + 0.5) * xScale - 0.5; yDiff = (y + 0.5) * yScale - 0.5; x1 = (int)floor(xDiff); y1 = (int)floor(yDiff); x2 = (int)ceil(xDiff); y2 = (int)ceil(yDiff); if (x1 < 0) x1 = 0; if (y1 < 0) y1 = 0; if (x2 >= srcWidth) x2 = srcWidth - 1; if (y2 >= srcHeight) y2 = srcHeight - 1; v1 = srcData[y1 * srcWidth + x1]; v2 = srcData[y1 * srcWidth + x2]; v3 = srcData[y2 * srcWidth + x1]; v4 = srcData[y2 * srcWidth + x2]; for (k = 0; k < 3; k++) { dstData[y * dstWidth * 3 + x * 3 + k] = (unsigned char)(((v1 * (x2 - xDiff) + v2 * (xDiff - x1)) * (y2 - yDiff) + (v3 * (x2 - xDiff) + v4 * (xDiff - x1)) * (yDiff - y1)) / ((x2 - x1) * (y2 - y1))); } } } } ``` 2. 彩色转黑白 彩色转黑白是一种将彩色图像转换为灰度图像的常见方法。其基本思想是通过将每个像素的 RGB 值取平均值,得到对应的灰度值。 下面是 C/C++ 的实现代码: ``` void ColorToGray(unsigned char* srcData, unsigned char* dstData, int width, int height) { int i, j, k; unsigned char r, g, b, gray; for (i = 0; i < height; i++) { for (j = 0; j < width; j++) { r = srcData[i * width * 3 + j * 3]; g = srcData[i * width * 3 + j * 3 + 1]; b = srcData[i * width * 3 + j * 3 + 2]; gray = (unsigned char)((r + g + b) / 3); for (k = 0; k < 3; k++) { dstData[i * width * 3 + j * 3 + k] = gray; } } } } ``` 希望我的回答对您有所帮助!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值