负指数分布的性质_负指数分布.ppt

负指数分布

2. Poisson输入,又称最简单流. 满足下 面三个条件的输入称之为最简单流. (1) 平稳性. 又称输入过程是平稳的,指 在长度为t的时段内恰好到达k个顾客的概率 仅与时段长度有关,而与时段起点无关, 即 对任意?∈(0,∞),在(?,?+t]或(0, t)内恰好到 达k个顾客的概率相等: 设初始条件为 , 且有 . (2)无后效性. 在任意几个不相交的时间 区间内,各自到达的顾客数是相互独立的. 通俗地说就是以前到达的顾客情况,对以后 顾客的到来没有影响. (3)单个性又称普通性. 在充分小的时段 内最多到达一个顾客. 可以证明, 对于Poisson流, 随机变量N(t) 服从Poisson分布, 即在长度为t的时间内到达 k个顾客的概率为 其中参数?>0为一常数,表示单位时间内到 达顾客的平均数,又称为顾客的平均到达 率. 对于Poisson流,可以证明其相继顾客 到达时间间隔?i,i=1, 2, …是相互独立同分 布的,服从负指数分布,其分布函数和分 布密度分别为: 3.k阶Erlang输入. 在参数为?的Poisson输入中, 对任意的j与k, 设第j与第j+k个顾客之间的到达间 隔为 , 可以证明,随机变量 Tk服从参数为?的k阶Erlang分布其分布密度为: 4.成批到达的输入. 排队系统每次到达的顾客不 一定是一个, 而可能是一批, 每批顾客的数目n是一 个随机变量, 其分布为: (二)服务时间分布 1.定长分布. 每一个顾客的被服务时间都是常 数?,此时服务时间t的分布函数为: 2.负指数分布. 各个顾客的被服务时间相互独 立, 具有相同的负指数分布, 分布函数为 其中?>0为一常数,服务时间t的数学期望1/? 为平 均被服务时间. 3. k阶Erlang分布. 每个顾客的被服务时间相 互独立,具有相同的Erlang分布, 密度函数为 其中?>0为一常数,平均服务时间为 当k=1时, Erlang分布化归为负指数分布. 当k→∞ 时,得到长度为1/?的定长分布. (三)排队论研究的基本问题 排队论研究的首要问题是排队系统主要 运行指标的概率规律,即研究系统的整体性 质,然后进一步研究系统的优化问题. 与这 两个问题相关的还包括排队系统的统计推断 问题. 1.通过研究主要运行指标在瞬时或平稳 状态下的概率分布及其数字特征,了解系统 运行的基本特征. 2.统计推断问题. 建立适当的排队模型 是排队论研究的第一步,建立模型过程中经 常要考虑如下问题:检验系统是否达到平稳 状态;检验顾客相继到达时间间隔的相互独 立性;确定服务时间的分布及有关参数等. 3.系统优化问题,又称为系统控制问题或 系统运营问题,基本目的是使系统处于最优 或最合理的状态. 系统优化问题包括最优设 计问题和最优运营问题, 例如有最少费用问 题、服务率的控制问题、服务台的开关策 略、顾客(或服务)根据优先权的最优排序等 方面的问题. 三. 几个排队模型 排队系统的一般决策过程: ① 根据已知条件绘制状态转移速度图; ② 依据状态转移速度图写出各稳态概率之 间的关系; ③ 求出 P0 及 Pn ; ④ 计算各项运行指标; ⑤ 用系统运行指标构造目标函数,对系统 进行优化. (一) M/M/n/n排队模型 顾客到达的间隔时间——负指数分布,参数为? 顾客接受服务的时间——负指数分布,参数为? 系统有n个服务台 系统最多容纳n个顾客 系统的状态空间 3. 求出平稳分布 (二) M/M/n排队模型 顾客到达的间隔时间——负指数分布,参数为? 顾客接受服务的时间——负指数分布,参数为? 系统有n个服务台 系统容量没有限制 系统的状态空间 3. 求出平稳分布 (三) M/M/n/m(m>n)排队模型 顾客到达的间隔时间——负指数分布,参数为? 顾客接受服务的时间——负指数分布,参数为? 系统有n个服务台 系统最多容纳m个顾客 系统的状态空间 3. 求出平稳分布 1. M/M/n/n状态转移图 0 k-1 2 1 k ? ? ? ? ? ? 2? 3? (k-1)? k? n-1 n ? ? n? ? (

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值