我有一个列数可变的pandas数据帧。我想对数据帧的每一列进行数值积分,这样我就可以计算从第0行到第n行的定积分。我有一个可以在1D数组上工作的函数,但是有没有更好的方法可以在pandas数据帧中这样做,这样我就不必迭代列和单元格了?我在想办法用applymap,但我不知道怎么用。在
这是在一维阵列上工作的函数:def findB(x,y):
y_int = np.zeros(y.size)
y_int_min = np.zeros(y.size)
y_int_max = np.zeros(y.size)
end = y.size-1
y_int[0]=(y[1]+y[0])/2*(x[1]-x[0])
for i in range(1,end,1):
j=i+1
y_int[i] = (y[j]+y[i])/2*(x[j]-x[i]) + y_int[i-1]
return y_int
我想用一次计算一个数据帧的多个列的方法来替换它,如下所示:
^{pr2}$
编辑:
启动数据帧dB_df:Sample1 1 dB Sample1 2 dB Sample1 3 dB Sample1 4 dB Sample1 5 dB Sample1 6 dB
0 2.472389 6.524537 0.306852 -6.209527 -6.531123 -4.901795
1 6.982619 -0.534953 -7.537024 8.301643 7.744730 7.962163
2 -8.038405 -8.888681 6.856490 -0.052084 0.018511

本文探讨如何利用pandas数据帧对多列数值进行积分。当前有一个1D数组的积分函数,但寻求更直接的方法在数据帧中批量处理积分,避免迭代列和单元格。已给出一个示例数据帧和对应的积分结果。
最低0.47元/天 解锁文章

485

被折叠的 条评论
为什么被折叠?



