推到 旋转矩阵公式_想知道旋转矩阵的带入公式

旋转矩阵是彩票投注策略,通过数学优化降低复式投注成本。它确保只要中奖号码在选定的组合内,至少能命中一定数量的号码。文章介绍了复式投注、轮次矩阵和旋转矩阵的区别,强调旋转矩阵在保证中奖率的同时降低成本。举例展示了不同类型的旋转矩阵及其应用,包括平衡式和加权式矩阵,提供了具体的公式和实例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

展开全部

旋转矩阵是一种号码的组合方法,而不是选号方法。旋转矩阵是根据数学的覆盖原理进e69da5e887aa3231313335323631343130323136353331333264623166行数字组合的一种方法,其核心是以最低的成本实现最大的效果。而复式投注是以滴水不漏、无遗漏的全覆盖设计对数字的排列进行组合。一种是经过优化了的组合,一种是全部的组合,对于乐透型彩票而言,复式投注由于组合形式毫无遗漏,因而只要所选的号码中含有中奖号码,有7+1个中7+1个,有7个中7个,依此类推,100%保证中奖;旋转矩阵则根据所使用的公式才能确定所中的号码个数。

<>“旋转矩阵”与复试投注

全球著名彩票预测家美国人Gail Howard 发明的“旋转系统”选号法已经造就了74个大奖得主,这是一种基于“旋转矩阵”数学原来构造的选号法,其核心宗旨是:以极低的成本实现复试投注的效果。

一个例子:比如你选了10个号码,不妨设为A,B,C,D,E,F,G ,H,J。你想把他们组合起来进行投注,那么组合号码的方法一般有以下几种:

1.复式投注

最简单的方法无疑是复式投注,你只要购买这十个号码的复式就行了。所需的注数是120注,成本是240元。复式投注的好处是可以把这10个号码的所有组合一网打尽,也就是说,如果你选了这10个号码中包含了开出的7个基本号,你可以稳中一等奖。但复式投注的缺点也是显而易见的,它的成本太高了,所以所选的号码个数很有限,如果超过12个号码就要超过3000元。如果你不想花那么大的成本的话,比如只想花50元以内,那么你可以选用其他的组合号码的办法。

2.轮次矩阵

轮次矩阵就是把每个号码都按顺序依次轮一遍,以如上的10个号码为例,轮次矩阵组合的10注如下:

A,B,C,D,E,F,G

B,C,D,E,F,G,H

C,D,E,F,G,H,I

D,E,F,G,H,I,J

E,F,G,H,I,J,A

F,G,H,I,J,A,B

G,H,I,J,A,B,C

H,I,J,A,B,C,D

I,J,A,B,C,D,E

J,A,B,C,D,E,F

这种组合号码的方法成本很低,而且看过去很美观,把每个号码都排了7遍。但实际上,这种组合号码的方法和胡乱组合一样,是很不可取的。因为它很可能漏掉了大奖。也就是说,即使这10个号码已经包含了开出的7个基本号,用这种组合号码的方法,很可能连三等奖也拿不到。比如开出的7个基本号是A,B,D,E,F,H,I或B,C,E,F,H,I,J 那么尽管这7个号码在上面的10个号码之内。上述方法组合出来的10注种,最多只中了四等奖(对了5个号),没有一注中三等以上奖。

3.旋转矩阵

如果用旋转矩阵来进行投注的话,上述情况是永远不会出现的。例如用以下的旋转矩阵,只要买12注那么,只要开出的7个基本号在你选的10个号码之内,你至少有一注对6个以上的号。

选10个号码,出7中6型旋转矩阵

A,B,C,D,E,F,G

A,B,C,D,H,I,J

A,B,C,E,F,H,J

A,B,C,E,F,I,J

A,B,D,E,F,H,J

A,B,D,E,F,I,J

A,B,E,F,G,H,I

A,C,E,G,H,I,J

B,D,F,G,H,I,J

C,D,E,F,G,H,I

C,D,E,F,G,H,J

C,D,E,F,G,I,J

<> 对于上面的“旋转矩阵”我们只需要将自己的“备选号码”带入A,B,C,D,E,F,G ,H,J中即可验证。

<>在实际运用中,首先要区分两个概念:平衡式旋转矩阵和加权式旋转矩阵。

一、 平衡式旋转矩阵――科学的复式投注

问题一:什么时候运用平衡式旋转矩阵?

首先,你选择了比较多的号码,而且在这么多号码中,你很难取舍,也就是说你认为这些号码都很可能出现,而且出现的机会差不多。你拿不准哪些可能性更大,哪些可能性更小。其次,你不想花很多的钱去购买复式投注,因为通常复式投注的资金是旋转矩阵的几倍甚至几十倍。

问题二:怎样应用平衡式旋转矩阵?

首先要看你选定了几个号码,以及你想要投入多少钱,根据这些挑选出相应的平衡式旋转矩阵。使用时只需把矩阵中的系统数字换成相应的你选的号码就可以了。

选7型的平衡矩阵包括以下几种:

(1)(7,六)型:即如果7个中奖号码都在你选的那组号码中,运用此矩阵可以保证你至少中一注对6个号码的奖。

(2)(6,六)型:即如果7个中奖号码有6个在你选的那组号码中,运用此矩阵可以保证你至少中一注对6个号码的奖。

(3)(6,五)型:即如果7个中奖号码有6个在你选的那组号码中,运用此矩阵可以保证你至少中一注对5个号码的奖。

(4)(7,五)型:即如果7个中奖号码都在你选的那组号码中,运用此矩阵可以保证你至少有一注中对5个号码的奖。

(5)(7,四)型:即如果7个中奖号码都在你选的那组号码中,运用此矩阵可以保证你至少得一注对4个号码的奖。

(6)(6,四)型:即如果7个中奖号码有6个在你选的那组号码中,运用此矩阵可以保证你至少中一注对4个号码的奖。

(7)(5,五)型:即如果7个中奖号码有5个在你选的那组号码中,运用此矩阵可以保证你至少中一注对5个号码的奖。

(8)(5,四)型:即如果7个中奖号码有5个在你选的那组号码中,运用此矩阵可以保证你至少中一注对4个号码的奖。

(9)(4,四)型:即如果7个中奖号码有4个在你选的那组号码中,运用此矩阵可以保证你至少中一注对4个号码的奖。

上面的各种矩阵,对你的选号要求不同,同样,你需要的投入也不同,最终提供的中奖保证也不同。如(7,六)型矩阵,对选号的要求比较高,但提供中6的保证,收益是相当可观的,而(6,六)型矩阵降低了对选号的要求,同时又提供了中6的保证,此时必定对你的投入要求增加了。运用旋转矩阵,可以看作是一个保险,其收益、投入、风险都是相辅相成的。

二、加权式旋转矩阵――科学的“胆托”投注

问题一:何时应该运用加权式旋转矩阵?

首先是,在你选择的号码中有1个或2个、3个号码你认为极可能出现,也就是说,你愿意赌它们一定会出现,这也是一般彩民所谓的“胆”。其次,你还选了一些其它的号码,这些号码你认为很可能出现,但是可能性不如第一种大,也就是一般彩民所谓的“托”(也有称为“拖”的)。

问题二:如何应用加权式矩阵?

在使用上,加权式矩阵与平衡式矩阵完全类似,只是要用的矩阵不太一样。还要注意一点,加权式旋转矩阵系统数字中,加“*”号的系统数字对应的号码是“胆”,其它系统数字对应的号码也就是“托”。

例如10个号码的(7,六)型加权式旋转矩阵,1个胆,9个托。保证如果你选的“托”中有6个是中奖号码,并且“胆”也是中奖号码,你一定可以中对6个号码的奖。需要特别加以注意的是,你选的“胆”一定要与中奖号码相同,也就是你选的“胆”一定要准,否则无法得到这种保证。如果你对你选的“胆”把握不是很大,那么建议你运用前面的平衡式旋转矩阵。

10个号码的(7,六)型加权式旋转矩阵,1个胆,9个托(共7注)

1. 1 3 5 6 8 9 10*

2. 1 2 5 6 8 9 10*

3. 1 4 5 6 7 9 10*

4. 2 3 4 6 7 8 10*

5. 2 3 5 7 8 9 10*

6. 1 2 3 4 7 8 10*

7. 1 2 3 5 6 9 10*

与平衡式旋转矩阵相比,加权式旋转矩阵所要求的选号技巧更高。平衡式旋转矩阵只要求你选出一组号码,选用对应的平衡式旋转矩阵即可得到相应的中奖保证。而加权式旋转矩阵要求你不仅要选出一组号码,还要在这组号码中确定一个、二个或三个最可能会出现的号码(即为“胆”)。只有这几个号码(“胆”)在中奖号码中一定出现,你才能得到相应的中奖保证,否则即使你选对了所有的中奖号码也无法得到你想要的中奖保证。但相应地,运用加权式旋转矩阵要比平衡式旋转矩阵更加节省,也就是说,你用选择号码的高要求换来了投入成本的降低。

<>应广大彩民朋友的要求公布双色球选6型平衡矩阵公式。由于篇幅有限所以本次仅公布包10-13个号码的选6型平衡矩阵公式。具体应方法:请先将你的10-13个备选号码排序(请勿顺次排列)然后根据公式中的需要分别代入即可!

<>一、10个号码(选6中5 - 12注)

2 3 5 6 7 9

1 2 4 7 9 10

3 4 6 7 8 10

3 4 5 6 9 10

1 3 5 6 7 10

1 2 4 5 6 8

1 2 3 4 8 9

1 4 5 7 8 9

2 3 5 7 8 10

1 2 6 8 9 10

1 2 3 4 5 10

1 3 6 7 8 9

二、11个号码(选6中5 – 19注)

2 3 7 9 10 11

2 4 7 8 10 11

1 3 4 6 7 10

4 5 6 9 10 11

1 5 7 9 10 11

3 5 6 8 10 11

2 3 4 6 8 9

1 4 5 7 8 9

3 5 7 8 9 10

1 2 6 8 9 10

1 2 3 4 5 10

1 2 3 7 8 11

1 2 4 6 7 11

2 4 5 8 9 11

3 4 5 6 7 11

1 2 3 5 6 9

2 5 6 7 8 10

1 3 4 8 9 11

1 6 7 8 9 11

<>三、12个号码(选6中5 – 33注)

2 3 9 10 11 12

4 7 8 10 11 12

1 3 6 7 10 12

1 2 5 8 10 12

1 5 7 9 11 12

3 5 6 8 11 12

2 3 4 6 8 10

2 6 7 8 9 12

3 5 8 9 10 12

4 5 6 9 10 12

1 3 4 5 10 11

2 3 7 8 10 11

1 2 4 7 9 10

2 4 5 8 9 11

3 4 6 7 9 11

1 2 3 5 6 9

2 5 6 7 10 11

1 3 4 8 9 12

1 6 8 9 10 11

1 4 5 6 7 8

1 4 5 6 10 11

2 3 4 5 7 12

1 3 4 8 11 12

1 2 3 5 7 11

1 3 7 8 9 11

1 2 4 6 9 12

1 2 4 10 11 12

1 2 6 8 11 12

1 2 3 4 7 8

2 4 6 7 11 12

1 2 3 6 9 11

5 6 7 8 9 10

3 4 5 7 9 10

<>四、13个号码(选6中5 - 56注)

3 9 10 11 12 13

4 7 8 10 12 13

1 3 6 7 12 13

1 2 5 6 7 10

1 2 5 7 12 13

5 6 8 11 12 13

3 4 5 6 10 13

2 6 7 8 9 13

2 4 6 8 9 10

1 2 5 8 9 13

2 3 6 10 12 13

2 7 9 10 11 13

1 2 4 9 12 13

2 4 5 7 8 11

4 6 7 9 11 13

1 3 5 6 9 11

3 6 7 8 10 11

3 4 6 8 9 12

1 6 8 9 10 13

1 4 5 6 7 8

1 5 7 10 11 13

3 4 5 7 11 12

1 3 4 8 11 13

2 3 4 10 11 12

1 7 8 9 11 12

1 4 5 9 12 13

1 2 8 10 11 12

1 2 3 6 8 12

1 2 3 4 7 8

2 4 6 7 11 12

1 2 3 6 9 11

5 6 7 9 10 12

1 3 4 7 9 10

1 3 5 8 10 12

2 3 8 11 12 13

3 5 7 8 9 13

4 5 8 9 10 11

2 3 4 5 6 13

1 4 6 10 11 12

2 3 5 7 9 12

2 4 5 8 10 12

1 2 3 4 10 13

2 5 6 9 11 12

2 3 5 8 9 10

1 2 4 5 9 11

1 2 6 8 11 13

1 2 3 5 7 11

1 2 7 9 10 12

2 3 4 6 7 13

2 5 6 10 11 13

3 5 7 8 10 13

4 5 6 7 9 13

2 3 4 8 9 11

1 4 7 10 11 13

已赞过

已踩过<

你对这个回答的评价是?

评论

收起

本人经过几年的努力,终于掌握了C#的编程,与同学一起开发了这套软件。与各位网友共勉。 1.5版正式推出!主要修正了(以下都是重大问题所以应及时更新,对给您造成的不便,本公司深表歉意): 1、重装软件后提示30天试用期已过的BUG; 2、机器码和注册码的0和字母O不好区分的问题。 3、一个注册表错误,会使软件重启后当成试用期结束。 “世间能有几回运,彩票游戏存玄机” ,也许您会有疑问:彩票开奖号码不是完全随机的吗?那我还算什么,随便写几个数字买算了!!其实您错了,世界上并没有绝对理的随机数,就算是用电脑也只能产生接近随机的数:在彩票开奖产生号码时,诸如摇奖机的物理特性、每个球的重量和光滑度的差异、空气的流动性等等都会使开奖结果产生一定的偏态,在中短期内有一定的规律可寻。 那么怎样才能找出偏态,利用偏态提高中奖的概率呢?用手工显然不行,您需要一款称手软件!但是现在彩票软件多得让人眼花缭乱,哪个才是适合您的呢?得彩易彩票旋转矩阵选号杀号王双色球专用版的问世,解决了您的烦恼,您只要下载使用了,软件就会主动成为您的好帮手,让您中奖不再是梦! 本公司双色球项目开发小组根据组里多名长年研究彩票双色球的专家的成果,经过反复的概率验证,精心设计了算法,其中大部分属于本公司原创独有。程序运行时随着期数的增加,出号趋势会愈发明显,算法也会愈发准确,一般开奖期数在最近50-150期时效果最为明显。 友情提示:彩票软件可以帮您提高中奖的概率,但并不能保证您100%中大奖,本软件也不例外!如果有所谓专家向您推荐号码并保证能中大奖的,请您一定要当心受骗! 1、本软件基于微软.net框架进行开发,技术先进。 2、市面上的一般彩票软件所提供的旋转矩阵只有廖廖几个方案(如保6中5,保5中4),本软件则提供了几十种方案,应有尽有。 3、选号杀号功能的强大和全面是其它一般彩票软件所没有的。 4、过滤功能全面,完全可以满足需要。 5、开奖数据可以更新,导入和导出,极大的方便彩民朋友。 6、学习容易,帮助文档详尽,上手极快。
<think>嗯,用户问的是旋转矩阵转换成欧拉角的方法,包括公式和示例。首先,我需要回顾一下欧拉角和旋转矩阵之间的关系。根据参考内容,用户提到了内旋下的xyz顺序,也就是按照roll、pitch、yaw的顺序旋转,对应的应该是ZYX顺序的欧拉角?或者可能需要确认一下具体的旋转顺序。比如引用[2]里提到的是xyz顺序的旋转矩阵转欧拉角,所以可能需要按照X→Y→Z的顺序吗?不过通常欧拉角的顺序有很多种,比如常见的ZYX、ZYZ等。这里可能需要明确用户给的引用中提到的xyz顺序具体指什么。 根据引用[2]和[3],旋转矩阵转欧拉角的公式推导可能需要分解旋转矩阵的各个元素。例如,在引用[1]中,Pitch的计算可能涉及到反正切函数,比如arcsin或者atan2函数。比如,Pitch(绕Y轴的旋转)对应的公式可能是通过旋转矩阵中的某个元素来计算,比如R[2][0]或者类似的元素,然后用arcsin或者atan2来得到角度。同理,Roll和Yaw可能通过其他元素计算。 需要注意不同的旋转顺序会导致不同的分解方式。例如,如果是内旋按照XYZ顺序,那么旋转矩阵可能是由三个旋转矩阵相乘得到的,比如R = Rz(roll) * Ry(pitch) * Rx(yaw)?或者可能顺序相反?这里可能需要仔细核对旋转矩阵的构造方式。比如在引用[3]中提到的欧拉角转旋转矩阵,如果是按照ZYX顺序的话,那么旋转矩阵可能是由Yaw(绕Z轴)、Pitch(绕Y轴)、Roll(绕X轴)组合而成,即R = Rx(roll) * Ry(pitch) * Rz(yaw),这取决于旋转的顺序是内旋还是外旋,以及旋转轴顺序。 假设这里的内旋指的是按照XYZ顺序的旋转,那么对应的旋转矩阵分解可能需要先绕X轴旋转roll,再绕Y轴旋转pitch,再绕Z轴旋转yaw。或者反过来?例如,内旋通常是按照相反的顺序应用旋转矩阵,所以如果是XYZ顺序的内旋,则总的旋转矩阵是R = Rz(yaw) * Ry(pitch) * Rx(roll)。这样的话,当将旋转矩阵分解为欧拉角时,就需要从矩阵元素中提取对应的角度。 例如,分解顺序是绕X轴旋转roll,再绕Y轴旋转pitch,再绕Z轴旋转yaw,那么旋转矩阵R的构造可能为: R = Rz(yaw) * Ry(pitch) * Rx(roll) 然后需要将给定的旋转矩阵分解为这三个角度的组合。这个时候,可能需要通过矩阵元素来推导各个角度的表达式。例如,矩阵中的某个位置可能包含sin(pitch),从而可以解出pitch,然后利用其他元素解出roll和yaw。 比如,假设旋转矩阵R的元素为: R = [ [cos(yaw)cos(pitch), cos(yaw)sin(pitch)sin(roll)-sin(yaw)cos(roll), cos(yaw)sin(pitch)cos(roll)+sin(yaw)sin(roll)], [sin(yaw)cos(pitch), sin(yaw)sin(pitch)sin(roll)+cos(yaw)cos(roll), sin(yaw)sin(pitch)cos(roll)-cos(yaw)sin(roll)], [-sin(pitch), cos(pitch)sin(roll), cos(pitch)cos(roll)] ] 这样的话,pitch可以通过第三行第一列的元素,即-sin(pitch)来得到,即pitch = arcsin(-R[2][0])。接下来,可以解出yaw和roll。比如,利用第一行第一列和第二行第一列的元素,cos(yaw)cos(pitch)和sin(yaw)cos(pitch),可以计算yaw = atan2(R[1][0], R[0][0])。同理,roll可以通过第三行第二列和第三列的元素,即cos(pitch)sin(roll)和cos(pitch)cos(roll),得到roll = atan2(R[2][1], R[2][2])。 但需要注意,当cos(pitch)为0时,即pitch为±90度时,会出现万向锁问题,此时roll和yaw的解会变得不唯一,这也是引用[3]中提到的问题。这时候可能需要特殊处理,比如设定roll为0,或者使用其他表示方法如四元数。 接下来,用户可能需要具体的公式和步骤,以及示例。例如,给定一个旋转矩阵,如何计算出对应的欧拉角。比如,假设一个旋转矩阵带入上述公式,得到pitch、yaw、roll的角度。 还需要注意不同的旋转顺序会导致不同的公式,所以必须明确用户所使用的旋转顺序。根据引用[2],是xyz顺序的内旋,那么可能对应的是X→Y→Z轴的旋转顺序,但需要确认。或者可能这里的xyz顺序是指绕X、Y、Z轴依次旋转,即先绕X轴旋转roll,再绕Y轴旋转pitch,再绕Z轴旋转yaw,此时旋转矩阵的组合顺序是R = Rz(yaw) * Ry(pitch) * Rx(roll)。或者是否是相反的顺序?比如,如果是内旋的话,每个旋转都是绕物体自身的坐标系轴,所以顺序可能相反,即先绕Z轴旋转yaw,再绕新的Y轴旋转pitch,再绕新的X轴旋转roll,此时旋转矩阵的组合顺序是R = Rx(roll) * Ry(pitch) * Rz(yaw)。这部分可能需要更仔细的分析。 例如,在引用[2]中,xyz顺序的内旋可能对应的旋转顺序是先绕X轴旋转roll,再绕Y轴旋转pitch,最后绕Z轴旋转yaw,那么总旋转矩阵是R = Rz(yaw) * Ry(pitch) * Rx(roll)。那么当分解这个矩阵时,如何得到各个角度? 或者可能根据不同的定义,这里需要根据旋转矩阵的构造方式来推导。例如,假设旋转顺序是XYZ,那么总旋转矩阵R = Rz(γ) * Ry(β) * Rx(α),其中α、β、γ分别为绕X、Y、Z轴的旋转角度。这时候,分解R的各个元素来得到这三个角度。 比如,矩阵R的各个元素可能为: R = [ [cosβ cosγ, cosγ sinα sinβ - cosα sinγ, cosα cosγ sinβ + sinα sinγ], [cosβ sinγ, cosα cosγ + sinα sinβ sinγ, -cosγ sinα + cosα sinβ sinγ], [-sinβ, cosβ sinα, cosα cosβ] ] 如果是这样的话,那么sinβ = -R[2][0],所以β = arcsin(-R[2][0])。然后,α可以通过R[2][1]和R[2][2]计算,即α = atan2(R[2][1]/cosβ, R[2][2]/cosβ),而γ可以通过R[1][0]/cosβ和R[0][0]/cosβ得到,即γ = atan2(R[1][0]/cosβ, R[0][0]/cosβ)。但需要处理cosβ=0的情况,即万向锁问题。 所以,根据不同的旋转顺序,分解的公式不同。用户可能知道的是特定顺序下的转换方法。根据引用[2]提到的xyz顺序内旋,对应的可能是X→Y→Z轴的旋转,也就是先绕X轴,再绕Y轴,最后绕Z轴,这种情况下,旋转矩阵的构造顺序是R = Rz(yaw) * Ry(pitch) * Rx(roll),因此分解的时候,需要按这个顺序来解。 因此,总结步骤可能是: 1. 从旋转矩阵R中提取pitch(绕Y轴的角度):pitch = arcsin(-R[2][0]),注意这里的符号可能根据旋转方向而定。 2. 当cos(pitch) ≠ 0时: - yaw = atan2(R[1][0]/cos(pitch), R[0][0]/cos(pitch)) - roll = atan2(R[2][1]/cos(pitch), R[2][2]/cos(pitch)) 3. 当cos(pitch) = 0时(即pitch为±90度),万向锁出现,此时只能确定yaw + roll或yaw - roll的值,需要设定其中一个角度为默认值,如roll=0,然后解另一个角度。 然后,用户可能需要一个具体的示例,比如给定一个旋转矩阵,计算对应的欧拉角。例如,假设pitch为30度,yaw为45度,roll为60度,构造对应的旋转矩阵,然后应用上述公式进行分解,看是否能得到原来的角度。 此外,引用[3]提到使用四元数或方向余弦矩阵来避免万向锁,所以在实际应用中可能需要考虑这些替代方法,但用户的问题是直接关于旋转矩阵和欧拉角之间的转换,所以可能需要重点放在公式和实现上。 最后,代码示例部分可能需要用Python或类似的编程语言展示如何实现这一转换,包括处理万向锁的情况。例如,使用numpy库来处理矩阵运算和反三角函数。</think>### 旋转矩阵转欧拉角的方法 #### 一、基本概念 欧拉角通过三个绕坐标轴的旋转角度(如 yaw、pitch、roll)描述三维旋转旋转矩阵是 3x3 正交矩阵,表示三维空间中的线性变换。转换时需明确旋转顺序(如内旋下的 XYZ 顺序)[^2]。 #### 二、转换公式推导 **假设旋转顺序为内旋 XYZ(即先绕 X 轴旋转 roll,再绕 Y 轴旋转 pitch,最后绕 Z 轴旋转 yaw)**,旋转矩阵 $R$ 可表示为: $$ R = R_z(yaw) \cdot R_y(pitch) \cdot R_x(roll) $$ 展开后矩阵元素为: $$ R = \begin{bmatrix} \cos y \cos p & \cos y \sin p \sin r - \sin y \cos r & \cos y \sin p \cos r + \sin y \sin r \\ \sin y \cos p & \sin y \sin p \sin r + \cos y \cos r & \sin y \sin p \cos r - \cos y \sin r \\ -\sin p & \cos p \sin r & \cos p \cos r \end{bmatrix} $$ 其中 $y = yaw$,$p = pitch$,$r = roll$。 #### 三、欧拉角提取公式 1. **Pitch(绕 Y 轴)**: $$p = \arcsin(-R_{20})$$ 2. **Yaw(绕 Z 轴)**: $$y = \arctan2\left(\frac{R_{10}}{\cos p}, \frac{R_{00}}{\cos p}\right)$$ 3. **Roll(绕 X 轴)**: $$r = \arctan2\left(\frac{R_{21}}{\cos p}, \frac{R_{22}}{\cos p}\right)$$ **注意**:当 $\cos p = 0$(即 $p = \pm 90^\circ$)时,系统进入万向锁状态,此时 roll 和 yaw 无法唯一确定,需特殊处理[^3]。 #### 四、代码示例(Python) ```python import numpy as np def rotation_matrix_to_euler(R): pitch = np.arcsin(-R[2, 0]) cos_p = np.cos(pitch) if np.abs(cos_p) > 1e-6: # 未进入万向锁 yaw = np.arctan2(R[1, 0]/cos_p, R[0, 0]/cos_p) roll = np.arctan2(R[2, 1]/cos_p, R[2, 2]/cos_p) else: # 万向锁时,默认 roll=0 roll = 0 yaw = np.arctan2(-R[0, 1], R[1, 1]) return np.degrees(yaw), np.degrees(pitch), np.degrees(roll) # 示例:构造旋转矩阵(yaw=45°, pitch=30°, roll=60°) yaw, pitch, roll = np.radians(45), np.radians(30), np.radians(60) Rx = np.array([[1, 0, 0], [0, np.cos(roll), -np.sin(roll)], [0, np.sin(roll), np.cos(roll)]]) Ry = np.array([[np.cos(pitch), 0, np.sin(pitch)], [0, 1, 0], [-np.sin(pitch), 0, np.cos(pitch)]]) Rz = np.array([[np.cos(yaw), -np.sin(yaw), 0], [np.sin(yaw), np.cos(yaw), 0], [0, 0, 1]]) R = Rz @ Ry @ Rx # 内旋 XYZ 顺序 # 转换回欧拉角 print(rotation_matrix_to_euler(R)) # 输出 (45.0, 30.0, 60.0) ``` #### 五、注意事项 1. **万向锁问题**:当 $p = \pm 90^\circ$ 时,建议改用四元数或方向余弦矩阵。 2. **旋转顺序一致性**:转换时必须与实际旋转顺序一致,否则结果错误[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值