教师版学案
高斯函数简介
不超过实数x的最大整数称为x的整数部分,记作[x]或INT(x)。
和整数部分紧密相关的是其小数部分,记为{x},定义为{x} =x-[x]。由[x]+1>x≥[x]不难得知1>{x}≥0,反过来,若x=[x],自然有{x}=0。这些简单的事实有时很有用处,对于给定的,要求出{x},先求出[x]就可以。
(需要注意的是,对于负数,[x]并非指x小数点左边的部分,{x}也并非指x小数点右边的部分,例如对于负数-3.7,[-3.7]=-4,而不是-3,此时{x}=-3.7-(-4)=0.3,而不是-0.7.)
高斯函数的性质
性质1 对任意x∈R,均有x-1
性质2对任意x∈R,函数y={x}的值域为Z。
性质3 取整函数(高斯函数)是一个不减函数,即对任意x1,x2∈R,若x1≤x2,则[x1]≤[x2].
性质4若n∈Z,x∈R,则有[x+n]=n+[x],{n+x}={x}.后一式子表明y={x}是一个以1为周期的函数.
性质5 若x,y∈R,则[x]+[y]≤[x+y]≤[x]+[y]+1.
性质6若n∈N+,x∈R,则[nx]≥n[x].
性质7若n∈N+,x>1,则在区间[1,x]内,恰好有[x/n]个整数是n的倍数.
性质8设p为质数,n∈N+,则p在n!的质因数分解式中的幂次为
p(n!)=[n/p]+[n/p2]+….