取整函数_2020级高一数学强基计划讲义第七讲《取整函数》,内有答案

教师版学案

8ea741623098e72df665da810e2220a4.png
c71bdd96f8f70a85b05cb1f18d1b44f5.png
a2e73ab61f3d61574a61737f11fb2186.png
41cb4af3aa9fd31b268d1bd638bfdd16.png
3d63005bb200ed13ba22acef71a4df7b.png

高斯函数简介

不超过实数x的最大整数称为x的整数部分,记作[x]或INT(x)。

和整数部分紧密相关的是其小数部分,记为{x},定义为{x} =x-[x]。由[x]+1>x≥[x]不难得知1>{x}≥0,反过来,若x=[x],自然有{x}=0。这些简单的事实有时很有用处,对于给定的,要求出{x},先求出[x]就可以。

(需要注意的是,对于负数,[x]并非指x小数点左边的部分,{x}也并非指x小数点右边的部分,例如对于负数-3.7,[-3.7]=-4,而不是-3,此时{x}=-3.7-(-4)=0.3,而不是-0.7.)

高斯函数的性质

性质1 对任意x∈R,均有x-1

性质2对任意x∈R,函数y={x}的值域为Z。

性质3 取整函数(高斯函数)是一个不减函数,即对任意x1,x2∈R,若x1≤x2,则[x1]≤[x2].

性质4若n∈Z,x∈R,则有[x+n]=n+[x],{n+x}={x}.后一式子表明y={x}是一个以1为周期的函数.

性质5 若x,y∈R,则[x]+[y]≤[x+y]≤[x]+[y]+1.

性质6若n∈N+,x∈R,则[nx]≥n[x].

性质7若n∈N+,x>1,则在区间[1,x]内,恰好有[x/n]个整数是n的倍数.

性质8设p为质数,n∈N+,则p在n!的质因数分解式中的幂次为

p(n!)=[n/p]+[n/p2]+….

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值