积分施瓦茨不等式_新高一数学强基计划讲义第五讲《柯西不等式》,经典例题,有详解...

这是一份新高一数学强基计划讲义,专注于讲解柯西不等式,包括其历史背景、数学意义和在高等数学中的广泛应用。内容涵盖柯西不等式的起源、积分施瓦茨不等式,以及柯西简介。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

新高一数学强基计划学案第五讲《柯西不等式》

各位头条的朋友们,紧张而忙碌的教学工作日复一日,本周我继续收集整理高水平学生的数学讲义,来适应将来的强基计划考试。本周讲义的主题是《柯西不等式》.

柯西不等式是由大数学家柯西(Cauchy)在研究数学分析中的“流数”问题时得到的。但从历史的角度讲,该不等式应称作Cauchy-Buniakowsky-Schwarz不等式【柯西-布尼亚科夫斯基-施瓦茨不等式】因为,正是后两位数学家彼此独立地在积分学中推而广之,才将这一不等式应用到近乎完善的地步。 柯西不等式是由柯西在研究过程中发现的一个不等式,其在解决不等式证明的有关问题中有着十分广泛的应用,所以在高等数学提升中与研究中非常重要,是高等数学研究内容之一。

附录一:柯西简介

柯西(Cauchy Augustin-Louis,1789-1857),法国数学家,1789年8月21日生于巴黎,他的父亲路易·弗朗索瓦·柯西是法国波旁王朝的官员,在法国动荡的政治漩涡中一直担任公职。由于家庭的原因,柯西本人属于拥护波旁王朝的正统派,是一位虔诚的天主教徒。

他在纯数学和应用数学的功底是相当深厚的,很多数学的定理、公式都以他的名字来称呼,如柯西不等式、柯西积分公式。在数学写作上,他被认为在数量上仅次于欧拉的人,他一生一共著作了789篇论文和几本书,以《分析教程》(1821年)和《关于定积分理论的报告》(1827年)最为著名。不过他并不是所有的创作都质量很高,因此他还曾被人批评“高产而轻率”,这点倒是与数学王子(高斯)相反。据说,法国科学院《会刊》创刊的时候,由于柯西的作品实在太多,以致于科学院要负担很大的印刷费用,超出科学院的预算,因此,科学院后来规定论文最长的只能够到四页。柯 西较长的论文因而只得投稿到其它地方.

附录二:《柯西不等式学案》教师版

欢迎批评指正.

3a66a428de2eb2d7b05ab9432ce000a9.png
cd6490a5675a904922efc7ed8829929e.png
e0e115f48ffe5b76efa2d9948f6ba9f1.png
91c4f1edb7ac456e7391466b50ccbba7.png
469de14f9d1a75a268c2c251519172a5.png
0818e16da2594b2b92c46f5cfa375bb7.png

十分感谢您的阅读与关注,别忘记点赞哟!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值