分数化成有限小数的方法_什么样的分数能化成有限小数?

直接上例题吧:

3/8、9/10、2/15和5/42,这几个分数当中,哪些可以化成有限小数?

解到这样的问题,很多同学用的办法是挨个用分子去除以分母,结果得到:

3/8=3÷8=0.375

9/10=9÷10=0.9

2/15=2÷15=0.13333333……

5/42=5÷42=0.1190476……

通过计算得到了3/8和9/10可以化成有限小数。

这样的方法当然没有问题了,但是如果我写出1000个分数让你判断的话,你也这样一个一个的去除吗?(ω)hiahiahia

显然不能,要不然从早晨算到傍晚。不仅天黑了,都算到两眼发黑了((o(>皿

那我们来看看,到底怎么才能用最快的速度判断出哪些分数才能化成有限小数?

好,请记住这样的两个步骤:

第一步:

先检查这个分数是不是最简分数,如果不是最简分数,一定要先化成最简分数!

牢记:如果不是最简分数,不能直接判断。

第二步:

把这个最简分数的分母进行分解质因数。

如果这个分母的质因数里以含有2或者只含有5,或者同时含有2和5,那么这个分数就可以化成有限小数。

如果这个分母当中,除了2和5以外,还有其它质因数,则这个分数一定不能化成有限小数。

听起来像绕口令一样吧。

来,我们用上面的几个分数来验证一下吧!

3/8,是最简分数,把分母8分解质因数:

8=2x2x2

只含有质因数2,可以化成有限小数。

9/10是最简分数,把分母10分解质因数:

10=2x5

只含有质因数2和5,可以化成有限小数。

2/15是最简分数,把15分解质因数:

15=3x5

除了质因数5,还含有3,不能化成有限小数。

5/42是最简分数,把42分解质因数:

42=2x3x7

除了质因数2以外,还含有3和7,所以不能化成有限小数。

总结:我们可以快速的从一个分数的分母上来判断一个分数是否能化成有限小数。

三种情况满足能化成有限小数的条件:

1、只含有质因数2

2、只含有质因数5

3、同时含有质因数2和5

其它情况都不可以。

好了,现在记住了吧(ω)hiahiahia

这道题要考试,别睡了!!!

### C语言中小数转分数的实现 为了在C语言中将小数转换为分数,可以通过以下方式实现。此过程涉及读取一个小数值并将其表示为最简形式的分数。 #### 定义函数用于计算最大公约数 (GCD) 首先定义一个辅助函数 `gcd` 来求解两个整数的最大公约数(Greatest Common Divisor),这一步骤对于简化最终得到的分数至关重要[^3]: ```c #include <stdio.h> // 计算两数的最大公约数 int gcd(int a, int b) { if (b == 0) return a; else return gcd(b, a % b); } ``` #### 主要逻辑:从小数到分数 接下来编写主要功能部分,这里假设输入的是正的小数,并且不考虑负数情况以及大于等于1的情况作为简单例子展示。实际应用时可以根据需求调整范围限制。 ```c void decimalToFraction(double dec, int *numerator, int *denominator) { double tolerance = 1e-6; // 设置精度阈值 // 初始化分子分母初值 *denominator = 1; while ((dec - (*numerator)/(*denominator)) > tolerance || ((*numerator)/(*denominator)-dec) > tolerance){ ++(*denominator); *numerator = round(dec * (*denominator)); // 使用 GCD 函数化简当前获得的结果 int divisor = gcd(*numerator,*denominator); *numerator /=divisor ; *denominator/=divisor ; } } int main(){ double value = 0.75; // 测试用例中的小数值 int numerator=0 , denominator=0; decimalToFraction(value,&numerator,&denominator); printf("%.2f 的近似分数是:%d/%d\n",value,numerator,denominator); return 0; } ``` 上述代码片段展示了如何把给定的一个双精度浮点数(`double`)转化为其对应的分数表达形式。其中采用了逐步增加分母直到找到满足一定误差范围内最佳匹配的方式;同时利用之前提到过的`gcd()`来进行约分化简工作以确保输出是最简化的真分数形态[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值