eviews建立时间序列模型_Eviews系列7|时间序列模型(ARIMA模型)之平稳性检验

本文介绍了如何使用Eviews建立ARIMA时间序列模型,强调了数据平稳性的重要性和ARIMA模型的局限性,即只能捕捉线性关系,不适合处理非线性数据。同时指出,不稳定的时间序列数据如股票数据,因易受外界因素影响,不适合用ARIMA模型预测。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

点击上方 蓝字关注我们!

06457a2c35a1450a6027f9e8b56984c0.png a0ba000fe4a97097135644d4b60875ab.png

上几期小统带大家一起学习了Eviews经典线性模型,这期我们开始学习时间序列模型。

01

                            ARIMA 简介

ARIMA,差分自回归滑动平均模型,又称求自回归滑动平均模型,是时间序列预测分析方法之一。

ARIMA(p,d,q)中,AR是“自回归”,p为自回归项数;MA是“滑动平均”,q为滑动平均项数;d是使之成为平稳序列所做的差分次数(阶数)。

02

                     ARIMA的优缺点

优点:模型十分简单,只需要内生变量而不需要借助其他外生变量。

缺点

1.<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值