分类是对一组类别中单个实例对象划分的技术术语。对象,还有现有的类别,是用特定的特征来描述的,例如像素的颜色或者区域的形状。为了定义类别,特征必须被指定,例如通过已知对象的类别。在训练之后,分类器将对象的特征与有关类别的特征做比较,并返回最大匹配的类别。根据所选的分类器,类别的可能性或者分类的可行度等可能额外的信息将被给出。
一般来说,可以区分两种对图像数据的分类方法。一种方法是基于单纯的像素分类,并且基于颜色或者纹理去分割图像。另一种方法则更广泛,分类任意特征,例如你可以基于区域特征去分类区域,如形状,大小,或者颜色。对于这里介绍的编程方法,找重点放在第一种方法上。需要注意的是,实际上HALCON提供的OCR及时一种广义的分类方法,其具有特定的算子。
HALCON提供了不同的分类器,最重要的分类器识神经网络(多层感知机或者MLP)分类器,支持向量机(SVM)分类器,高斯混合模型(GMM)分类器,和K最近邻(KNN)分类器。另外,盒分类器也是可行的,但是由于GMM分类会引起可比性的结果且也更稳定,这里仅仅去描述GMM分类器。再者,更“简单”的分类器也能用于图像的分割,这些分类器中包含了2维像素分类class_2dim_sup或者class_ndim_norm,其可以被用来仅仅欧式分类,但这些方法的不灵活的,所以重点还是放在MLP,SVM,GMM,和k-NN分类器。如果你想用“简单”分类器之一,请查看对应的例子即可。
对于特定任务,决定使用哪个分类器,且对于所选分类选择合适的参数则更具有挑战性,因为每个分类任务是不同的,因而需要不同的处理。HALCON提供了一些算子用