hardmard积 用什么符号表示_代数基础 | Kronecker积

Kronecker积在张量计算中非常常见,是衔接矩阵计算和张量计算的重要桥梁。刚开始接触张量计算的读者可能会被Kronecker积的名称或是符号唬住,但实际上这是完全没有必要的,因为Kronecker积的运算规则是非常容易理解的。

1 Kronecker积的定义

一般而言,给定任意矩阵

,则矩阵
和矩阵
的Kronecker积为

其中,符号

表示Kronecker积。显然,矩阵
的大小为
,即行数为
、列数为
。当然,这种写法就是我们在线性代数中所学的块状矩阵(block matrix),在定义中,矩阵
的每个元素分别与矩阵
相乘,最终组合成一个大小为
的矩阵。

不过需要注意的是,矩阵

和矩阵
的Kronecker积具有前后顺序,根据Kronecker积的运算规则,我们也可以得到矩阵
和矩阵
的Kronecker积为

其中,矩阵是由矩阵

的每个元素分别与矩阵
相乘得到,这意味着
并不相同,Kronecker积不存在交换律。

【例1】给定矩阵

和矩阵
,分别求

【解答】根据Kronecker积的定义,

同理,

在这个例子中,我们既可以直观地感受Kronecker的计算规则,同时也可以发现,这里计算得到的

确实不相等。

【例2】给定矩阵

和矩阵
,试问
是否成立呢?

【解答】根据Kronecker积的定义,有

结合

的计算结果,不难发现,
成立,即对
进行转置实际上与先对矩阵
分别转置再进行Kronecker积相乘得到的结果相同。

【例3】给定向量

和向量
,分别求

【解答】根据Kronecker积的定义,有

2 Kronecker积的基本性质

在小学数学中,我们学习了很多关于加减乘除的计算定律,可能有些人已经忘了具体的计算定律名称,但这些计算定律却实实在在地烙印在我们的脑海中。在这里,我们不妨以乘法为例,重温一下这些熟悉的概念:

  • 乘法交换律:
  • 乘法结合律:
  • 乘法分配律:

我们已经知道,Kronecker积不存在交换律,但是否存在结合律和分配律呢?即

【性质1】结合律(associativity):

【性质2】分配律(distributivity):
,

这两个性质是否存在?我们不妨先看一下例4和例5。

【例4】给定矩阵

,分别求

【解答】根据Kronecker积的定义,有

从而可得到

【例5】给定矩阵

,分别求

【解答】根据Kronecker积的定义,可得

从这两个例子中稍加归纳,便不难发现,Kronecker积存在结合律和分配律,这两个性质是Kronecker积最为朴素的性质。除此之外,Kronecker还有几个关于矩阵计算的基本性质,它们分别与矩阵的转置、相乘、求逆矩阵相关。

【性质3】给定任意矩阵
,则

这个性质在我们开始介绍Kronecker积定义的时候就已经给出来了。

【性质4】令矩阵
,则

【证明】

证毕。

【性质5】若矩阵
非奇异,则
恒成立。

【证明】根据性质5,由于

成立,证毕。

【例6】给定矩阵

,分别求

【解答】根据Kronecker积的定义,可得

其逆矩阵为

另外,由于

当然,从这个例子中也不难发现,当需要计算

时,若利用等价的
先分别计算矩阵
和矩阵
的逆矩阵,则能大大降低对
直接求逆矩阵的计算成本。

3 Kronecker积的特殊性质

就前面已经提到的一些基本性质而言,它们要么是从Kronecker积本身的运算规则中衍生而来的,要么就与矩阵的一些基本运算直接相关,这些基本运算包括了转置、相乘以及求逆矩阵,然而,这些基本运算都不能用于描述矩阵的特征。下面,我们将着重分析Kronecker积得到的矩阵具有怎样的性质,在内容上,我们会介绍一些用于描述矩阵特征的“指标”,这些指标都来自于线性代数,例如,矩阵的迹表示矩阵主对角线元素之和、F-范数表示矩阵所有元素的平方和开根号。归纳来看,有以下五个性质:

  • 【性质6】迹:
  • 【性质7】F-范数:
  • 【性质8】
    范数:
  • 【性质9】行列式:
  • 【性质10】秩:

其中,只有方阵存在矩阵的迹和行列式。当然,这里仅仅是概括性地给出性质,接下来我们来逐个分析这些性质。

【性质6】若矩阵
,则
恒成立。

【例7】给定矩阵

,分别求

【解答】根据矩阵的迹的定义,可得

另外,由于

【性质7】对于任意给定的矩阵
,有
恒成立。

【例8】给定矩阵

,分别求

【解答】根据F-范数的定义,可得

另外,由于

【性质8】对于任意给定的向量
,有
恒成立。

【例9】给定向量

,求

【解答】根据

范数的定义,可得

另外,由于

【性质9】若矩阵
,则
恒成立。

【例10】给定矩阵

,分别求矩阵的行列式

【解答】根据矩阵行列式的定义,可得

【性质10】对于任意给定的矩阵
,有
恒成立。

【例11】给定矩阵

,分别求

【解答】根据Kronecker积的定义,可得

不难看出,

,而

4 相关参考

[1] https://archive.siam.org/books/textbooks/OT91sample.pdf

[2] https://www.math.uwaterloo.ca/~hwolkowi/henry/reports/kronthesisschaecke04.pdf

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值