list排序sort降序_高效数据处理:排序行数据

本文介绍了如何使用R语言中的dplyr包进行数据排序,特别是利用arrange()函数进行列变量的升序和降序排列。在数据准备阶段创建数据集后,详细讲解了arrange()函数的用法,包括如何处理缺失值以及与其他函数如arrange_all(), arrange_if(), arrange_at()的配合使用,以满足不同的排序需求。" 112859338,10582644,理解浮点数误差:0.1+0.2为什么不等于0.3?,"['java', '补码', '浮点数运算', '二进制转换', 'IEEE 754标准']
摘要由CSDN通过智能技术生成

ef650535fee3fb1be1afb5e43755353e.png

在数据集中,列变量中常常会有缺失值、离群值等异常值,我们需要快速查找这些异常值;

在进行数据可视化时,有时也需要按数据大小排序,然后进行绘图。

这时就需要用到行排序,按数据的升序、降序排列可以快速找到一列数值的极值。

dplyr包是数据处理很强大的一个包,包中的arrange()函数可以对数据进行排序。

1. 数据准备

1.1 创建数据集

创建三个向量,并生成一个简单数据集。

x1 1,2), times = 4) # 生成一列重复数字c(1,2)4次的向量
x2 8, mean = 2, sd = 2)  # 生成一列均值为2,标准差为2的数字向量
x3 1,6,8,4,NA,6,7,NA) # 向量中有2个缺失值
newdata # 生成数据框
newdata  # 查看数据框
902760efc767d690b05f2f084c9f1ab8.png

1.2 数据准备

install.packages("dplyr") # 安装包
library(dplyr) # 加载包

mydata # 转换数据集类型
mydata
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值