stata psm命令_Stata新命令:psestimate 倾向得分匹配中协变量的筛选

本文介绍了Stata的新命令psestimate,用于倾向得分匹配(PSM)中协变量的选择。psestimate通过比较不同模型的极大似然值,帮助选择最佳的协变量一阶和二阶形式。文章详细阐述了命令的安装、语法、操作,以及如何通过psestimate筛选匹配变量,再结合psmatch2进行PSM匹配,并使用pstest检验平衡性假设。此外,还展示了如何通过psgraph绘制匹配变量的平衡性状况,确保PSM分析的有效性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

空间计量专题研讨班-连享会

倾向得分匹配分析 (PSM) 已经在诸多领域得到了应用。虽然 PSM 不能完全解决内生性问题,但却能在很大程度上缓解自我选择问题导致的偏差。在前期文献中,Becker & Ichino (2002, Stata Journal, 2(4):358-377) 对 PSM 的分析过程进行了详细的介绍,Stata 中也有多个命令可以执行 PSM 分析,如 pscore, psmatch2, treatrew (Stata Journal, 14(3): 541-561), gpscore (SJ 8(3):354--373), kmatch.

85a5069129e857c7da5977fa001eec7c.png

平衡性假设

在 PSM 匹配时,用treat变量对控制变量进行Logit回归,得到倾向得分值。倾向得分值最接近的控制组个体即为实验组的配对样本,通过这种方法可以最大程度减少实验组与控制组个体存在的系统性差异,从而减少估计偏误。在进行PSM匹配后的其他估计前比如PSM-DID 估计前,还需进行协变量的平衡性假设检验,即匹配后各变量在实验组和控制组之间是否变得平衡,也就是说实验组和控制组协变量的均值在匹配后是否具有显著差异。如果不存在显著差异,则支持进一步的模型估计。

在平衡性检验之前,我们先使用psmatch2命令进行PSM匹配,处理变量为train,协变量为age、educ、black,结果变量为re78,采用一对一近邻匹配,具体操作如下:

69ea76190d9629b153acdde7b8f86c38.png

PSM 匹配完成之后,我们需要检验匹配后的样本是否满足平衡性假设,即实验组与控制组的匹配协变量是否没有显著性差异,在这里可以使用pstest命令进行检验,具体如下:

4b3155eae23c3954b035ca80e2e65768.png

平衡性假设检验结果如下:

0ad3a2665580220c02ef57b60d3dfb61.png

根据t检验结果发现,以上5个协变量在实验组与控制组之间不存在显著性差异。

那么,在进行 PSM 分析之前,应当如何选择匹配协变量,使模型实现最佳的拟合效果呢?今天介绍的 psestimate 命令可以通过比较不同模型的极大似然值,帮助我们选择能实现最佳拟合效果的协变量的一阶和二阶形式。

The psestimate command estimates the propensity score proposed by Imbens and Rubin (2015).  The main purpose of the program is to select a linear or quadratic function of covariates to include in the estimation function of the propensity score.

1. 命令的安装与示例数据导入

在Stata命令窗口执行第一行代码即可完成对 pse

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值